

Cerpolech

Production of Sustainable aircraft grade Kerosene from water and air powered by Renewable Electricity, through the splitting of CO₂, syngas formation and Fischer-Tropsch synthesis

KEROGREEN FINAL EVENT

27.09.2022 @ KIT-IMVT CO₂ Neutral Fuels by Adelbert Goede Project Coordinator

Adelbert Goede KEROGREEN Final Event 27.09.2022 @ KIT-IMVT

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under GA-Nr. 763909

HYGEAR

INERATEC

The Energy Transition

Renewable Electricity Share in EU reaches 37% in 2020

> Well underway to reach EU 2030 Target of 40% renewable energy!

Or is it ??

• Electricity only 20% of energy mix > Mobility, High temperature Industrial heat Low temperature domestic heat, Agriculture/waste disposal/mining **not covered**

Requires:

- Doubling deployment rate of solar and wind capacity this decade
- Coping with intermittency and seasonal mismatch of supply and demand

Problem already:

• Grid congestion, dynamic response > curtailment > wasting renewables

What is Needed?

Long-duration (seasonal, interannual) and large scale (PJ) electricity storage

Solution:

Energy storage in high energy density fuels and chemicals

 converting air (containing CO₂, N₂ species) and water into high energy density products, powered by (surplus) electricity

Power to X (PtX) is key technology (X = Liquid Fuel) Couples the power sector to chemical, heating and fuel sectors

Mobility is case in point, depends heavily on energy dense fuels
 Aviation is the extreme case considered here

Options for Sustainable Aviation Fuel

Adelbert Goede KEROGREEN Final Event 27.09.2022 @ KIT-IMVT

- Hydrogen: low energy density (1/3000 kerosene) too bulky
- liquefied at 20K: energy density factor 4.5 lower than kerosene,
- pressurised at **700 bar**: energy density **factor 6.7 lower** than kerosene
- New aircraft design, fuel system, ground handling and storage system Short haul flight perhaps -> Qualification will take > 10 yrs and > 100 M\$

Batteries: low specific energy (1/50), low energy density (1/14)

Long haul aviation not feasible – too heavy
 Airbus A 380 needs 14.000 ton battery to replace its 260 ton kerosene pay-load

Hybrid: DLR H₂ Antares 1-seater, range 750 km, speed 170 km/hr, alt 4 km
36 kW PEM Fuel Cell @ 80 kg, 10 kWh battery 45-60kW @ 50kg
Why not take the train instead?

Bio Fuel: Current EU policy

 Food vs. Fuel vs. Flora trilemma – there is not enough of it current kerosene consumption ~ 5 Mbarrel/day > requires 2 to 5 x NL area to grow

Why CO₂ neutral kerosene?

- Climate Neutral fuel for long haul transportation
- Existing engine technology and infrastructure
- Long term (seasonal), large scale (EJ) Energy storage and Energy security
- Air Pollution reduction: No Sulphur, No soot, Lower NO_x

What are the Challenges?

- Conversion of air N_2 , H_2O , CO_2 into energy dense fuels by PtX technology
- System Integration: compact, decentralised, dynamic operation
- Direct Air Capture of CO₂ to render the fuel cycle CO₂ neutral

From proposal to EU Horizon 2020 funded project:

 EU H2020 LCE call > 1st stage 2016 > 2nd stage 2017 > Selected end 2017 KEROGREEN project start 1 April 2018 > Project ends 30 Sept 2022

KEROGREEN Concept and Consortium

- CO_2 gas captured from ambient air is split by the plasma reactor into products CO_{2}, CO, O_{2}
- The O_2 is separated out electro-chemically
- The CO content purified
- CO and water forms syngas
- Fischer-Tropsch reactor synthesizes hydrocarbons
- Hydrocracking to optimize kerosene content
- Upon combustion: CO₂ reemitted into the atmosphere
- Direct Air Capture (not part of project) closes the Circle

2012: First DIFFER experiments on CO₂ plasma splitting 4 measurement campaigns in collaboration with Univ of Stuttgart - IGVP Inspired by Russian research in the 1960-70's, see Rusanov, Legasov et.al **First DIFFER publication**:

[1] A.P.H. Goede, et. al., EPJ Web of Conferences **79**, 01005 (2014), DOI: 10.1051/epjconf/20147901005

Objective:

 CO_2 splitting by channelling energy into molecular vibrations to break the strong chemical bond, not to heat the gas (non-equilibrium chemistry $T_{vib} > T_{gas}$)

- High productivity: large gas flow (75slm), power density (45W/cm²)
- Fast dynamic response to intermittent power supply
- No scarce materials employed
- Favourable upscaling (volume vs. surface process)

First measurement results

Two modes of operation identified depending on gas pressure:

- 1. Low density dilute plasma, low ionization degree
- 2. High density filamentary plasma, high ionization degree

Mode switch around 100mbar

CO production increases **linear** with **power** O_2 increase in stoichiometric ratio

 $η = H/E_{CO}$ energy efficiency $α = E_v/E_{CO}$ conversion $η = CF/P_{RE} = α H/E_v$ [1]

Energy efficiency η and CO conversion yield α

- Communicating vessels
- > No economic advantage

H = Minimum Enthalpy E_{CO} = Energy to form CO E_v = Energy per incoming CO₂

Early Russian work

Russian claim of the seventies: 90% energy efficiency Low energy (<1eV) plasma electrons excite vibrations in CO_2 molecule Vibrations drive chemistry by vibrational ladder climbing to dissociation limit Vib -Tran relaxation is kept low by T<1000K

Chemical reaction scheme

 $CO_2 \rightarrow CO + O (\Delta H=5.5 \text{ eV})$ followed by reuse energetic O radical $CO_2 + O \rightarrow CO + O_2 (\Delta H = 0.3 \text{ eV})$ Net $CO_2 \rightarrow CO + \frac{1}{2}O_2 (\Delta H=2.9 \text{ eV})$

Requirements:

- Thermal non-equilibrium, gas temperature < 1000 K
- Follow-up reaction with atomic oxygen to occur
- CO product extractable from plasma discharge

Measurement:

CO₂ gas temperature increases with input RF power to over 5000K. Non-equilibrium condition not met

New Insights: Vibrational vs. thermal dissociation

Temp

1. Thermalisation sets in after 30 µs

Non-thermal equilibrium only during plasma

Raman spectroscopy reveals:

- <- Time dependence of CO₂ heating
 - **2D resolved distributions** of \rightarrow temperature and concentration CO_2 , CO, O_2 and O

2. CO and O formation in hot core

Thermal dissociation condition

COGRE

ignition phase

Adelbert Goede KEROGREEN Final Event 27.09.2022 @ KIT-IMVT

Ref. Alex van de Steeg et.al. ACS Energy Lett. 2021, 6, pp 2876-2881

Alex van de Steeg et.al. Plasma Sources Sci. Technol. 2020,29, 115001

Oxygen separation – Material selection

High temperature solid oxide electrochemical cell for separation O_2 from the CO_2 , CO, O_2 gas mixture

Oxygen electrode (anode): LaSrCoFe with GaDCe interlayer, porous for good oxygen conductivity, serving as mechanical support

Electrolyte: thin YSZr for sufficient O²⁻ conduction, yet withstanding voltage gap

Plasma electrode (cathode)

- Electronic conductivity (e⁻)
- Ionic conductivity(O²⁻)
- Low catalytic activity to CO
- Electro-chemical stability
- Mechanical stability

→ Perovskites
 Sr₂Fe_{1.5}Mo_{0.5}O_{6-d} (SFM)
 Also tried: LaSrZnTi (LSZT)
 Powders supplied by Cerpotech
 Underlying membrane research by VITO

[1] Adelbert P. H. Goede CO₂ Neutral Fuels EPJ Web of Conferences 189, 00010 (2018)
[2] A. Pandiyan et.al. J. CO2 Util, 57 (2022) 101904 https://doi.org/10.1016/j.jcou.2022.101904

Oxygen separation – Validation

Important 2022 Result

Coupled plasma-electrolysis process yields

- 91% less O₂ and
- **138% more CO** In the exit gas stream compared with plasmolysis alone

No degradation observed in durability test

Ref **A. Pandiyan et.al.** J. CO₂ Util, 57 (2022) 101904 https://doi.org/10.1016/j.jcou.2022.101904

More details in presentation Stefan Welzel

Kerosene synthesis and System Integration

CO purifier by HyGear: CO yield after purification 78% at 98% purity (target CO yield for industrial scale was 68 % at 96 % purity)

Water Gas Shift reactor at *KIT:* Enhanced by CO₂ sorbent and catalyst, Dynamic operation and modelling

Fischer-Tropsch reactor at *INERATEC:* based on high heat transfer micro-structured reactor, with Co-based catalyst, heat integration at system level

Hydro-Cracking reactor at KIT: hydration of the FT crude, isomerization to alkanes, no

aromata, no alkenes

System Integration at KIT

Integration of 6 modules of varying TRL into one consistent system with matched gas flow, pressure and power.

Stepped approach: O_2 separator not yet integrated, upscaled O_2 separator integrated, recirculation O_2 and heat integration.

LCA on energy and material flows, CAPEX and OPEX preliminary numbers

more details in presentation Peter Pfeifer, followed by Site visit

KEROGREEN offers a **novel route** to sustainable aviation fuel (**SAF**), powered by renewable electricity:

- Departs from recirculated CO₂ rather than H₂, employing plasma technology
- Meets climate and environmental requirements of UN-ICAO, EU Green Deal and COP-26 Glasgow 2021, UN - CORSIA 2019 and EC-RTD-CETP-Clean Aviation

Results:

- CO₂ conversion in CO and O₂ reaches 90%, scales linear with RF plasma power
- Energy efficiency improvement by ongoing plasma reactor development
- Feasibility of oxygen separation from CO gas stream demonstrated
- System Engineering of the integrated process established
- Efficiency improvement through heat integration and recirculation of separated CO₂
- Techno-economic assessment on sustainable kerosene
- Sustainability assessment on energy and material streams

Main Challenges and Future Outlook

- System Integration to reach full performance
- Upscaling
- Cost reduction

Ultimately: decentralised, off-shore, PtX-DAC system, close-coupled and sized to the renewable electricity source (MW)

Acknowledgement

Michalis Tsampas¹, Arunkumar Pandiyan¹, Suleyman Er¹, Ilker Tezsevin¹, Roland Dittmeyer², Peter Pfeiffer², Francisco de Sales², Tabea Stadler², Michael Klumpp², Andreas Patyk², Manuel Andresh², Sabine Müller², Vesna Middelkoop³, Marijke Jacobs³, Anne Dalager-Dyrli⁴, Leif Olav Jøsang⁴, Sophie Labonnote-Weber⁴, Evgeniya Khomyakova⁴, Leonardo Roses⁵, Ellart de Wit⁵, Tim Böltken⁶, Friedemann Timm⁶, Linus Schulz⁶, Alexander Alekseev⁷, Maarten van Dijk⁸, Richard van de Sanden¹, Waldo Bongers¹, Martijn Graswinckel¹, Ben Elzendoorn¹, Paola Diomede¹, Pedro Viegas¹, Bram de Wolf¹, Floran Peters¹, Alex van de Steeg¹, Erik Langereis¹

1.DIFFER, Dutch Institute for Fundamental Energy Research (NWO) 2.KIT, Karlsruhe Institute of Technology (Helmholtz Association), Institutes IMVT and ITAS 3.VITO, Vlaamse Instelling voor Technologisch Onderzoek NV 4.Cerpotech, Ceramic Powder Technology AS 5.HyGear B.V 6.INERATEC, Innovative Chemical Reactor Technologies GmbH **7.LINDE AG** 8.SkyNRG

I should also like to thank EC - CINEA staff serving as Project Officer/Cluster Manager for the KEROGREEN LCE project Olja Kristic, Javier Garcia-Fernandez, Maria Moragues-Canovas and Laura Gomez-Lozano

Enquiries: Adelbert Goede Dutch Institute for Fundamental Energy Research De Zaale 20, 5612 AJ EINDHOVEN a.p.h.goede@differ.nl www.differ.nl

Adelbert Goede KEROGREEN Final Event 27.09.2022 @ KIT-IMVT

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under GA-Nr. 763909

Any Questions ?

Adelbert Goede KEROGREEN Final Event 27.09.2022 @ KIT-IMVT

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under GA-Nr. 763909

