Porous Photoelectrodes for Scalable Solar Fuel Production

H. Johnson, G. Zafeiropoulos, P. Varadan, , P. Kunturu, M. Lavorenti, M. Tsampas

This research received funding from the Dutch Research Council (N.W.O.) in the framework of the ENW PPP Fund for the top sectors.

TOYOTA'S ENVIRONMENTAL VISION/ Towards 2050

CHALLENGE 1	CHALLENGE 2	CHALLENGE 3	CHALLENGE 4	CHALLENGE 5	CHALLENGE 6
New vehicle Zero CO2 Emissions Challenge	Life Cycle Zero CO2 Emissions Challenge	Plant Zero CO2 Emissions Challenge	Challenge of Minimizing and Optimizing Water Usage	Challenge of Establishing a Recycling-based Society and Systems	Challenge of Establishing a Future Society in Harmony with Nature

MOTIVATION – SOLAR FUELS/ Towards 2050

- Only around 20% of the energy we use comes from electricity
- 80% is from 'chemical fuels' where energy is stored in chemical bonds
- Global energy consumption is still growing
- Need to replace conventional chemical fuels – fossil fuels – with renewable alternatives

TOYOTA'S ENVIRONMENTAL VISION/ Towards 2050

ΤΟΥΟΤΑ

IMPORTANCE OF RENEWABLE HYDROGEN/ Fuel Cell Electric Vehicles

ΤΟΥΟΤΑ

Mirai Lifecycle Assessment (Toyota Motor Corporation)

TOYOTA MOTOR EUROPE

USES OF HYDROGEN/ Towards 2050

Direct use:

- In fuel cells (mobility especially large vehicles, power supply)
- Direct combustion engine (mobility)

As chemical feedstock:

Fuel cell - Mirai

H₂ combustion - Yaris

• Ammonia, hydrocarbon production (through Fischer-Tropsch reaction) for aviation and other hard to replace sectors

1. TOWARDS LOW COST RENEWABLE-H₂ - PHOTOVOLTAIC / ELECTROLYSER

PHOTOVOLTAIC / ELECTROLYSER – main challenge = cost

TOYOTA MOTOR EUROPE

2. TOWARDS LOW COST RENEWABLE-H₂ - PHOTOELECTROCHEMICAL

PHOTOELECTROCHEMICAL – main challenge = scalabilty

ΤΟΥΟΤΑ

TOYOTA MOTOR EUROPE

High Efficiencies Achieved but impractical sizes

- Studies have shown that **PEC has the potential to be cheaper than PV/E** (Energy Environ. Sci., 2016,9, 2354-2371)
- **High efficiencies** achieved indicate technology potential
- More effort needed into scale-up for practical implementation

Efficiency for potential economic viability

RESEARCH INTO SCALING / 50 cm² BiVO₄

PEC-PV Configuration	Illum. Area (cm²)	$J (mAcm^{-2})$	I (mA)	Average. STH Efficiency. (%)
Pt/2-SHJ/Pt	50	0.02	1.0	0.03
CoP _i /W:BiVO ₄ (FSI)/2-SHJ/Pt	50	1.00	50.0	1.2
CoP _i /W:BiVO ₄ (BSI)/2-SHJ/Pt	50	1.50	75.0	1.9
Dual-CoP _i /W:BiVO ₄ /2-SHJ/Pt	50	1.72	86.0	2.1
Dual-CoP _i /H,W:BiVO ₄ (FSI)/2-SHJ/Pt	0.24	4.45	1.07	5.5
Dual-CoP _i /H,W:BiVO ₄ (FSI)/3-SHJ/Pt	0.24	5.12	1.23	6.3

I. Y. Ahmet et al, Sustainable Energy Fuels, 2019, 3, 2366–2379

ΤΟΥΟΤΑ

Porous Photoelectrodes (For reduced ionic resistance)

- Conventional devices use a 'monolithic structure'
- When the device is increased in size, there is an increase in ionic resistance
- **Our design uses porous photoelectrodes,** so species can travel **through** the electrode
- Proof of concept porous photoelectrodes
 demonstrated
- Functionalisation with water absorbing materials allows operation in liquid water or ambient humidity

HUMIDITY AS WATER SOURCE / Motivation

- Inspired by the simplicity of PV installations, we are developing a humidity-absorbing solid electrolyte based hydrogen production
- This allows the decoupling of **solar irradiance and freshwater resources**
- Expands geographical applicability of PEC applications

OVERCOMING CHALLENGES OF PEC/Motivation

Photoanode Diaphragm

Conventional PECreactors

- Input : light & (purified) water
- Dual use of water: reactant & electrolyte solvent
- Bubble formation \rightarrow impede catalysis ٠
- Safety issues H₂+O₂ mixing

Alternative solid state PECreactor

- Input : light & humidified air (water source)
- Polymeric electrolyte membrane (PEM)
 - Direct product separation
 - Minimize water utilization
- Porous photoelectrodes
 - Compatible with PEM
 - Hinder bubble formation 0

EXPERIMENTAL SET-UP/ Porous electrodes

TOYOTA MOTOR EUROPE

POROUS PHOTOELECTRODES/ High Performance Material

Performance under environmental conditions

- Performance was measured under various relative humidities and in liquid water
- At 60% RH (Madrid in summer) we have 70% of performance we achieve in liquid!
- However overall < 1% efficient

band-gap Materials/ High Performance Material

A. Gedamu, 2016, Nanoscale Horiz. 1. 10.1039/C5NH00098J.

UV light absorption

band-gap Materials/ High Performance Material

A. Gedamu, 2016, Nanoscale Horiz.. 1. 10.1039/C5NH00098J.

Visible light absorption

Deposition by SILAR and Performance

• BiVO₄ deposited by scalable SILAR technique on Ti felt electrodes

W-DOPED BiVO₄ POROUS PHOTOELECTRODES / High Performance Material

- Electron microscopy indicates particle growth on Ti fibers
- With homogeneous particle size of around 90 nm

- In line with the literature, doping proved to be a highly effective strategy to increase photocurrent
- Doping percentages 1 5% were tested and 3% was found to be optimum

W-DOPED BiVO₄ POROUS PHOTOELECTRODES/ High Performance Material

Performance under environmental conditions

Photocurrents (at 1.23 V) up to:

- 2.05 mA cm⁻² in liquid water
- 1.1 mA cm⁻² at 60% RH

PROTOTYPE

• Assembled working prototype of 100 cm²

PERSPECTIVES FOR DIRECT SOLAR FUEL PRODUCTION BEYOND H₂

- The gas phase design based on porous photoelectrodes lends itself to use in electrochemical CO₂ conversion – avoids problem of low CO₂ solubility in liquid electrolyte
- Aim to produce fuels which cannot easily be replaced by hydrogen, for example, jet fuels
- We are now investigating the expansion of this research topic into this field, primarily related to the CO₂RR catalyst development

Sun-To-X Solar Energy for Carbon-Free Liquid Fuel

Scalable photoelectrochemical hydrogen production and storage in a liquid silicon hydride carrier

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 883264.

An international consortium

Project Overview

Sun-To-X Concept

- Tandem configuration of photoanode / photocathode to maximise light absorption – target 8.2 mA cm⁻² (10% solar hydrogen efficiency) – moving towards high efficiency photoelectrodes
- Porous substrates with appropriate water absorbers to utilise ambient humidity as water source

·· PROTECTED 関係者外秘

Thermochemical H₂ Conversion to Hydrosil

Concept:

- Concentrated solar light (through specialised receiver) and electricity will convert H₂ to Hydrosil
- First time demonstration of concept and optimisation of process steps

Recycling to Waste Plastics

Key targets:

- Reductive depolymerisation of plastics to monomers / valuable hydrocarbons through 'rechargeable' silicon hydride
- Production of hexane (0.1 mol scale) from PCL

Demonstration

Key Targets:

- Design and build a demonstrator to show the developed process
- 1 m² PEC device producing 29 g H₂ / day thermochemically converted into 320 g HydroSil / day

Existing Lightfuel PEC set-up at Engie

- Development porous photoelectrodes to improve photoelectrode scalability
- Functionalisation with water absorbing materials allows production of hydrogen from ambient humidity
- Deposition of W-doped BiVO₄ gives a performance of up to 2.05 mA cm⁻² in liquid water, 1.1 mA cm⁻² at 60% RH
- Prototype assembled
- Extension of this work expansion to high efficiency photoelectrodes and development of liquid hydrogen storage material

