

KEROGREEN Winter school

Future directions in research on Power-to-X for sustainable chemicals & fuels 10-11 February 2022

in collaboration with E-Fuel, BECCU and EERA JP Energy Storage

KEROGREEN has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No 763909.

KEROGREEN Winter school

Future directions in research on Power-to-X for sustainable chemicals & fuels

10-11 February 2022

Online event (Zoom)

Chair: Prof. Roland Dittmeyer, Karlsruhe Institute of Technology, DE

KEROGREEN is a Research and Innovation Action (RIA), financed by the European Commission under the Call Topic "Competitive low-carbon-energy - new knowledge and technologies" (H2020-LCE-06-2017) in the H2020 Work programme "Secure, Clean and Efficient Energy".

The main goal of this project is the development and testing of an innovative conversion route for the production of sustainable aircraft grade Kerosene from water and air powered by renewable electricity. The KEROGREEN conversion route is based on plasma driven dissociation of air captured CO₂, solid oxide membrane oxygen separation and Fischer-Tropsch (F-T) kerosene synthesis.

The winter school was **organised together with** the research projects **E-Fuel** and **BECCU** and the **EERA Joint Programme Energy Storage** (EERA JPES). It provided the latest developments on the Power-to-X related technologies and their future directions. Especially concepts aiming at ensuring sustainability have been pointed out. Topics like CO₂ capture, Electrolysis, Co-Electrolysis, Chemical synthesis, Plasmolysis, Fuel synthesis, System integration and System, process, reactor and kinetic modelling have been addressed.

The event gave the opportunity to young researchers to present their research activities and results in either short talks or posters. It also included a special session (with a contest) dedicated to presentations from doctoral students from the EERA JPES network (EERA PhD day).

PROGRAMME

Thursday 10th February 2022

9:00 – 9:10	Opening Winter school and Welcome (R. Dittmeyer)
	Chair morning session: Juha Lehtonen, VTT
9:10 – 9:35	EU Project KEROGREEN: Main Challenges and first results Adelbert Goede, DIFFER (NL)
9:35 – 10:00	Plenary presentation of E-Fuel and BECCU Projects Juha Lehtonen, VTT (FI)
10:00 – 10:25	Status of modular plants for decentralised Power-to-X Michael Rubin (Klumpp), KIT (DE)
10:25 – 10:45	Coffee break
10:45 – 12:05	 Oral presentations Vanesa Gil, Aragon Hydrogen Foundation: Air Carbon Recycling for Aviation Fuel Technology Jan-Willem Könemann, TNO: Take-Off a novel process to synthetic aviation fuel Christian Frilund, VTT: CO₂ conversion to hydrocarbons using reverse water gas shift and FT-synthesis Esperanza Ruiz, CIEMAT: Process intensification for advancing Power-to-Fuel
12:05 – 13:05	Lunch break
	Chair afternoon session: Francisco Vidal Vázquez, KIT
13:05 – 14:05	 Oral presentations Mihalis Tsampas, DIFFER: Synergistic combination of plasma and electrocatalysis for nitrogen fixation by water Stefan Welzel, DIFFER: CO₂ plasmolysis in the KEROGREEN process chain: Development of a plasma reactor module for CO production Marijke Jacobs, VITO: Development of thin electrode layers by spray coating for solid oxide cells
14:05 – 14:25	Coffee break
14:25 – 15:45	 Oral presentations Marjut Suomalainen, VTT: Techno-economic assessment of producing diesel from CO₂ and H₂O via co-electrolysis and Fischer-Tropsch synthesis Vafa Järnefelt, VTT: The potential of CCU technologies in mitigating climate change Miia Nevander, VTT: Techno-economics of the synthesis route from CO₂ and clean H₂ to polycarbonate polyols Joachim Falkenhagen, Windland Energieerzeugungs GmbH: Green Future Quota" for power-to-X fuels like green hydrogen and kerosene
16:00	End of 1 st day

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No 763909.

PROGRAMME

Friday 11th February 2022

9:00	Start 2 nd day
	Chair morning session: Roland Dittmeyer, KIT
9:00 – 9:30	Invited plenary presentation: The role of hydrogen and hydrogen-derived fuels in the IEA Net Zero Emissions 2050 roadmap Ilkka Hannula, IEA (FR)
9:30 – 10:50	 Oral presentations Emil Drazevic, Arhus University: Decentralized production of green and sustainable ammonia – insights from EU/Japan collaboration Onni Linjala, VTT: CO₂ supply options for P2X and results from carbon capture experiments Sari Rautiainen, VTT: Fossil-free polycarbonate polyols from captured carbon dioxide and renewable hydrogen Dorela Dhamo, KIT: Defossilizing the aviation sector with synthetic fuels (poster)
10:50 – 11:10	Coffee break
11:10 – 12:30	 Oral presentations Peter Holtappels, DTU: Organic Electrosynthesis: a sustainable route to polymers and other high value chemicals? Mikko Lappalainen, VTT: State-of-the-art and future mapping of electrolyser technologies Ville Saarinen, VTT: High temperature electrolysis and co-electrolysis for production of green hydrogen and syngas Mery Hernandez, KIT: Plasma assisted H₂O₂ synthesis from water and oxygen
12:30 – 13:30	Lunch break
12:30 – 13:30 13:30	Lunch break EERA JP Energy Storage "PhD day"
12:30 – 13:30 13:30	Lunch break EERA JP Energy Storage "PhD day" Chair afternoon session: Adelbert Goede, DIFFER
12:30 - 13:30 13:30 13:30 - 13:40	Lunch break EERA JP Energy Storage "PhD day" Chair afternoon session: Adelbert Goede, DIFFER Introduction to the session Adelbert Goede, DIFFER (NL) Oral PhD presentations
12:30 – 13:30 13:30 13:30 – 13:40 13:40 – 15:00	Lunch break EERA JP Energy Storage "PhD day" Chair afternoon session: Adelbert Goede, DIFFER Introduction to the session Adelbert Goede, DIFFER (NL) Oral PhD presentations - Tabea Stadler, KIT: Syngas Production in the Kerogreen Process Chain: Development of a compact Sorption-Enhanced Water-Gas Shift Reactor - Georgios Sakas, LUT University: Dynamic energy and mass balance model for an industrial alkaline water electrolyzer plant process - Aki Braunschweiler, VTT: Light olefin production from CO2 - Manuel Andresh, KIT: Quantitative model-based assessment of global socio-ecological challenges and opportunities for the transition to Power-to-X: Case study for the aviation sector
12:30 - 13:30 13:30 13:30 - 13:40 13:40 - 15:00 15:00 - 15:20	Lunch break EERA JP Energy Storage "PhD day" Chair afternoon session: Adelbert Goede, DIFFER Introduction to the session Adelbert Goede, DIFFER (NL) Oral PhD presentations - Tabea Stadler, KIT: Syngas Production in the Kerogreen Process Chain: Development of a compact Sorption-Enhanced Water-Gas Shift Reactor - Georgios Sakas, LUT University: Dynamic energy and mass balance model for an industrial alkaline water electrolyzer plant process - Aki Braunschweiler, VTT: Light olefin production from CO2 - Manuel Andresh, KIT: Quantitative model-based assessment of global socio-ecological challenges and opportunities for the transition to Power-to-X: Case study for the aviation sector Coffee break
12:30 - 13:30 13:30 13:30 - 13:40 13:40 - 15:00 15:00 - 15:20 15:20 - 15:40	Lunch break EERA JP Energy Storage "PhD day" Chair afternoon session: Adelbert Goede, DIFFER Introduction to the session Adelbert Goede, DIFFER (NL) Oral PhD presentations - Tabea Stadler, KIT: Syngas Production in the Kerogreen Process Chain: Development of a compact Sorption-Enhanced Water-Gas Shift Reactor - Georgios Sakas, LUT University: Dynamic energy and mass balance model for an industrial alkaline water electrolyzer plant process - Aki Braunschweiler, VTT: Light olefin production from CO2 - Manuel Andresh, KIT: Quantitative model-based assessment of global socio-ecological challenges and opportunities for the transition to Power-to-X: Case study for the aviation sector Coffee break Virtual visits to research infrastructures (KIT, VTT)
12:30 - 13:30 13:30 13:30 - 13:40 13:40 - 15:00 15:00 - 15:20 15:20 - 15:40 15:40 - 15:50	Lunch break EERA JP Energy Storage "PhD day" Chair afternoon session: Adelbert Goede, DIFFER Introduction to the session Adelbert Goede, DIFFER (NL) Oral PhD presentations - Tabea Stadler, KIT: Syngas Production in the Kerogreen Process Chain: Development of a compact Sorption-Enhanced Water-Gas Shift Reactor - Georgios Sakas, LUT University: Dynamic energy and mass balance model for an industrial alkaline water electrolyzer plant process - Aki Braunschweiler, VTT: Light olefin production from CO2 - Manuel Andresh, KIT: Quantitative model-based assessment of global socio-ecological challenges and opportunities for the transition to Power-to-X: Case study for the aviation sector Coffee break Virtual visits to research infrastructures (KIT, VTT) AWARD decision

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No 763909.

Winter school Organisation Committee

KEROGREEN representatives (main organisator):

Roland Dittmeyer (KIT) Sabine Müller (KIT) Francisco Vidal Vázquez (KIT)

BECCU & E-Fuel representatives:

Janne Karki (VTT) Juha Lehtonen (VTT) Matti Reinikainen (VTT) Heidi Saastamoinen (VTT)

EERA JP Energy Storage representative:

Adelbert Goede, DIFFER

EERA PhD Day Selection Committee

Emil Drazevic (Aarhus University) Adelbert Goede (DIFFER) Peter Holtappels (DTU) Esperanza Ruiz Martínez (CIEMAT)

Winner of the EERA PhD Day Award

(Payment of Open Access publication & EERA JP Certificate):

Tabea Stadler from KIT-IMVT, with her presentation "Syngas Production in the KEROGREEN Process Chain: Development of a compact Sorption-Enhanced Water-Gas Shift Reactor."

More Information...

KEROGREEN: https://www.kerogreen.eu/

BECCU: https://www.beccu.fi/

E-Fuel: https://www.e-fuel.fi/

EERA JP Energy Storage: <u>https://www.eera-energystorage.eu/</u>

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No 763909.

ABSTRACTS of presentations^{*}

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No 763909.

^{*}in alphabetic order

Author: Manuel Andresh¹

<u>Title</u>: Quantitative model-based assessment of global socio-ecological challenges and opportunities for the transition to Power-to-X: Case study for the aviation sector

Abstract:

Power-to-X (PtX) is currently discussed as a chance to defossilize the transport sector and reduce its impact on the climate with synthetic fuels. The potential social and ecological impacts other than the Global Warming Potential (GWP) are rarely addressed in this context. This work is aiming at identifying the social and ecological challenges and opportunities that could arise with a transition to PtX. Aspects of dynamic and consequential Life Cycle Assessment (LCA) and Social-LCA (S-LCA) are integrated into the here developed approach. The underlying idea is that the transition to alternative fuels for a reduction in CO₂ emissions should at least not worsen sustainability aspects within other important areas. Fossil and bio-based jet fuels are integrated as benchmarks with the Sustainable Development Goals (SDGs) as normative framework. The SDGs are globally accepted and cover the most important aspects of sustainability around the world. Every SDG is connected to at least one indicator of the S-LCA or LCA or additional values and then addressed individually within this approach. It is not assumed that the production of fuels can in any way reach the SDGs by themselves, however they can have negative and positive impacts on them. The risks and potential impacts are analysed on a global scale with modelled PtX constellations for each country / region with country-specific conditions for wind and photovoltaic power. It is assessed how many of the PtX constellations can reach the fossil and bio-based benchmarks and which SDGs are affected the most (positively and negatively). Additionally, a 2050 scenario is integrated to account for potential changes in technologies and costs. The structure of the model and first preliminary results will be presented.

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No 763909.

¹ PhD Day presentation

<u>Author</u>: Aki Braunschweiler² <u>Title</u>: Light olefin production from CO₂

Abstract:

The light olefin production from CO₂ happens through two consecutive reactions: reverse water gas shift (RWGS) and Fischer-Tropsch (FT), where the FT reaction is catalyzed with iron catalyst suitable for high temperature Fischer-Tropsch (HTFT) that is capable of producing light olefins with a good selectivity. In the BECCU project, the production of light olefins from CO₂ was studied in a laboratory scale RWGS+FT setup with different FT catalysts and process conditions were tested. The tested catalysts were Fe-Mn/Al₂O₃ and Fe-Na-S/Al₂O₃. The catalysts were tested at different temperatures, with different space velocities (residence times) and different H₂/CO ratios. The best light olefin selectivity was obtained with Fe-Mn/Al₂O₃ catalyst with gas hourly space velocity of 4250 h⁻¹ and H₂/CO ratio of 1, where the selectivity was between 48.6 % and 52.3 %. depending on temperature. The recycling of product gases was also tested with washcoated Fe/Al₂O₃ catalyst. The recycling of product gases improved the light olefin selectivity up to 63.7% as well as the overall conversion

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No 763909.

² PhD Day presentation

<u>Authors</u>: Dorela Dhamo, Jannis Kühn, Michael Rubin, Roland Dittmeyer <u>Title</u>: Defossilizing the aviation sector with synthetic fuels

Abstract:

One of the biggest challenges of the 21^{st} century is the anthropogenic climate change. According to bp Statistical Review of World Energy around 34 thousand million tons of CO₂ were emitted in 2019, an increase of approximately 0.5 % worldwide. The transport sector is responsible for up to 24 % of these CO₂ emissions.

Beside other alternatives to defossilize the transport sector like electro mobility and fuel cells – technologies that might be implemented in the road traffic – in the long distance transport, renewable synthetic fuels play an important role in the early replacement of the current used fuels. The existing filling-station network, the current infrastructure and engines can continue to be used.

The synthesis of these renewable synthetic fuels starts with the separation of CO_2 from the air. Other carbon sources like biomass are also possible. After the CO_2 capture, synthesis gas preparation via e.g. electrolysis takes place. Synthesis gas serves as an educt for the next step, Fischer-Tropsch synthesis, where hydrocarbon chains different length und type are produced. These Fischer-Tropsch products do not meet the requirements of the current fuels and therefore, need to be upgraded in further steps. Depending on the hydrocarbon's length/type, and the target final molecule, several upgrading steps take place, like hydrocracking, isomerization, hydrotreating etc. The whole process is known as the Power-to-Liquid route.

This work focuses on branched molecules with a high octane number, such as isooctane, which is a very important component of gasoline and aviation gasoline. The concept of a possible Power-to-Liquid route for the production of these molecules and the effects of the process conditions on the Fischer-Tropsch product distribution have been investigated and will be presented in the poster. Preliminary design of the further experiments comprising the isomerization step and its coupling with the Fischer-Tropsch synthesis will be described.

<u>Authors</u>: Emil Drazevic, Jacopo Catalano, Michalis Tsampas, Stefan Welzel, Adelbert Goede, Saso Gyergyek, Anja Sedminek, Luka Skubic, Vesna Middelkoop, Marijke Jacobs, Farnaz Sotoodeh, Vivek Sinha, Alberto Garbujo, Jun Maruyama, Zyun Siroma <u>Title</u>: Decentralized production of green and sustainable ammonia – insights from EU/Japan collaboration

Abstract:

Renewable energy sources are considered a main solution to decarbonize the power sector. However, the production of electrical energy from renewables is rarely matched by consumption. Ideally, the renewable electrical energy should be stored when the wind is not blowing and the sun is not shining. Storing excess electrical energy in chemical bonds appears as an obvious choice for long-term energy storage. Electrical energy could be stored in H₂ using an electrolyser and later use H₂ as a fuel; however H₂ has low volumetric energy density and is difficult to transport. Ammonia on the other hand (NH₃) appears as a good candidate for the long-term storage because it has a much higher volumetric energy density and it is much easier to transport and can be cracked either to produce H₂ or used as a fertilizer. Today almost all ammonia is produced by the Haber-Bosch process, which can be completely electrified using off-the-shelf technologies. Haber-Bosch, however, is heavily centralized. Renewable energy from sun and wind, on the other hand, are decentralised and diluted. Therefore, the search is for an alternative to the conventional Haber-Bosch process, relevant for smaller, decentralized scales directly coupled to the renewable energy sources. In the ORACLE project we look into three different pathways to produce sustainable ammonia: i) electrified Haber-Bosch reactor to serve as a benchmark; ii) Electrochemical synthesis of NH₃ and iii) plasma-assisted electrochemical synthesis of ammonia. This talk introduces the main advantages and challenges associated with these processes.

Author: Joachim Falkenhagen

Title: "Green Future Quota" for power-to-X fuels like green hydrogen and kerosene

Abstract:

Political instruments to support renewable energy development include carbon taxes, government grants for investment, support for production in the form of feed-in tariffs or CfD, and quota obligations. The existing level of carbon taxes or prices in the EU ETS are insufficient to support high-cost measures like the substitution of fossil fuels with power-to-X fuel. Carbon pricing gets opposition because significant transfers to the state take place, while the incentive shall support efforts where ultimately no or less carbon dues will be paid. With a zero Carbon future in mind, the political will to set up and reinforce a scheme, which shall become obsolete soon, appears limited.

Feed-in-tariffs for renewable energy have gained traction for some while. They lead to investment in renewables quickly, while spreading the costs over future decades. Their acceptance has waned when the cumulative cost effect became more apparent.

Quota systems are widespread in the regulated, monopolistic US power utilities (renewable portfolio obligations). In competitive power markets, providers for the fulfilment of quotas must fear an abolishment of quotas, and new market entrants with cheaper technology.

A quota shall usually lead to an increasing share of renewables in the energy mix, so that fulfilment costs increase over time.

The consumption of fossil fuels should be weighted with additional dues in line with the climate damage made, so that consumers avoid fuel-intensive products and services and providers strive for a less fuel-intensive production. These levies would start rather high and then recess with decarbonization.

This conflict can be solved with power-to-X quotas where the obligation can be fulfilled over an extended time, e.g. 10 or 20 years after emissions. The quota fulfilment from several base years will cumulate over time. The scheme also allows for low-cost financing of the investments required to fulfil the quota.

Further details of the proposition are addressed.

Author: Christian Frilund

Title: CO₂ conversion to hydrocarbons using reverse water gas shift and FT-synthesis

Abstract:

The E-FUEL concept is based on Power-to-X (PtX) production models, in which renewable electricity will be converted into hydrogen by high temperature electrolysis and combined with flue gas captured CO₂ to produce synthesis gas. This syngas will be converted to paraffinic transportation fuels through Fischer-Tropsch (FT) and upgrading steps. To produce these species, VTT is employing a thermocatalytic reverse water-gas shift (rWGS)/Catalytic partial oxidation (CPOx) reactor and coupling it to the FT. An E-FUEL PtX demonstration plant located at an industrial site is planned for 2023. The thermodynamics dictates that the rWGS reaction, which is endothermic, is favoured at high temperatures. As the downstream FT synthesis is operated at 15 - 30 bar pressure, it is practical to also pressurize the rWGS reactor. However, at higher pressures more methane is formed, which has an impact on the overall efficiency of the process. This again favors choosing a high operation temperature of 800-900 °C. The rWGS/CPOx process enables utilization of FT outlet gases, consisting of unreacted species and light FT hydrocarbons. Oxygen provides the heat to the reactions, allowing for autothermal operation. It is also vital in the control of solid carbon formation, one of the major practical issues of rWGS systems, which further increases in the presence of FT hydrocarbons. The coupled rWGS/CPOx-FT system increases the CO₂ efficiency from 50-60% to 80-90% compared to a once-through setup.

The focus of this presentation is in the experiences with a fully integrated CPOx/rWGS-FT process, which has been constructed for VTT's Mobile Synthesis Unit (MOBSU). Technical validation and feasibility of the system is assessed.

<u>Authors:</u> V. Gil, K. Tadanaga, H. Gröger, S. Wuttke, J. Gurauskis, P. Camargo, R. Guidici, F. Bonino, J. Hadermann, C. Rosero, M. Aparicio, R. Fernández <u>Title</u>: Air Carbon Recycling for Aviation Fuel Technology

Abstract:

A recent Horizon 2020 funded project (Air Carbon Recycling for Aviation Fuel Technology, 4AirCRAFT) in International cooperation with Japan for Research and Innovation on alternative renewable fuels will be presented.

4AirCRAFT's ultimate goal is to develop a next generation of stable and selective hybrid catalysts for the direct CO_2 and H_2 conversion into C_8 - C_{16} (jet fuels for aviation sector). 4AirCRAFT will overcome the current challenges by combining three main reactions into one cascade reactor to increase the CO_2 conversion rate and simplifying the process. By achieving this we will be able to circumvent the need for further steps for hydrocracking or hydrorefining of Fischer–Tropsch waxes.

The novel technology will produce sustainable jet fuel at mild conditions, reducing energy consumption and contributing to a circular economy, leading to a decrease in greenhouse gases emissions and reduced dependence on fossil fuel-based resources.

In summary, 4AirCRAFT combines hybrid catalytic conversion and process intensification to bring out an efficient, precise, flexible and scalable unique technology to direct convert recycled CO₂ into sustainable and clean liquid fuels, thus making flying carbon neutral.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 101022633. This work is supported by Japan Science and Technology Agency (JST) under Grant Agreement No JPMJSC2102. This project is developed in the frame of a Mission Innovation Challenge.

<u>Authors</u>: Mery Hernandez, Alexander Navarrete, Roland Dittmeyer <u>Title</u>: Plasma assisted H₂O₂ synthesis from water and oxygen

Abstract:

Hydrogen Peroxide (H_2O_2) is considered the preferred green chemical for many industrial processes given that water is the only H_2O_2 degradation product. Since the common H_2O_2 synthesis process (Anthraquinone Auto-Oxidation) is not environmentally friendly, many alternatives have been proposed. One of them is the direct synthesis from H_2 and O_2 in the presence of a catalyst. Nevertheless, effective catalysts for this reaction usually involve noble metals deployment, affecting the sustainability of such process.

Plasmas are an alternative platform for a decentralized H_2O_2 production that do not require noble metals, have instant on/off time, and can activate molecules such as oxygen and water. Promising results have been reported for discharge and gliding arc plasma reactors regarding yield and selectivity to H_2O_2 . Microwave plasmas are not usually studied in this process, but they are very interesting since they can handle higher gas flow rates, do not require electrodes and have shown potential for efficient use of energy in comparison with the other plasmas. Nevertheless, the direct combination of H_2 and O_2 at high temperatures usually present in microwave plasmas (up to 3000K) are a concern for safety reasons.

In this sense, in line with decentralized concepts, it is proposed to directly use water in combination with oxygen to produce H_2O_2 . The interface between water and plasma would be the main study object, along with the mixing regime, spray conditions and flow pulses which have shown to affect both the efficiency and yield of the reaction, balancing the increased contact of plasmas and water together with the reaction control inside the aqueous phase. When plasma is in contact with water, the plasma-water interactions can lead to many direct reactions at the plasma-water interface and indirect side reactions in the bulk water.

Authors: Peter Holtappels, David Tran

<u>Title</u>: Organic Electrosynthesis: a sustainable route to polymers and other high value chemicals?

Abstract:

In advancing towards a more sustainable society, biomass and (electro)catalysis will play a leading role in the development of green chemistry and in the generation of renewable chemicals and fuels. To date, oil and natural gas are the main feedstock for producing the commodity chemicals that everything from medicine to paint is based on today. In a future sustainable chemical industry, the use of natural gas as energy, hydrogen, and carbon source must be replaced by renewable electricity, water, biomass and/or CO₂, respectively.

Organic electrosynthesis, which often involves hydrogenation and oxidation reactions, can be a key technology to electrify the chemical industry and produce valuable organic compounds in a more green and sustainable manner from water and biomass derived compounds. The contribution will briefly introduce the concepts of organic electrosynthesis and its previous application in the synthesis of organic compounds. A novel type of reaction is to synthesize commodity chemicals such as Ethylene Glycole (EG) for the synthesis of polymers and plastics such as polyethylene terephthalate (PET), a biobased polymer. Advanced concepts for the electrochemical cells such as Tandem Electrochemical Reactors and Flow reactors, which aim to intensify the synthesis process in terms of energy efficiency and selectivity, will be explained and actual research attempts introduced. First results related to the search of suitable electrocatalysts for the desired synthesis reactions will be presented.

<u>Authors</u>: Marijke Jacobs, Leif Olav Jøsang and Vesna Middelkoop <u>Title</u>: Development of thin electrode layers by spray coating for solid oxide cells

Abstract:

This study investigates the innovative use of a deposition technique, spray coating, for the fabrication of optimal thicknesses of solid oxide cell (SOC) layers on a range of SOC-compatible materials. The work has been carried out as part of the European KEROGREEN project that aims to utilize CO₂ into sustainable aircraft kerosene. To separate the oxygen at higher operating temperatures after CO₂ dissociation (plasmolysis) for creating a CO stream for Fischer-Tropsch downstream synthesis, a solid oxide electrolyzer cell is used. For the electrodes, the most promising LaSr-based perovskite materials were selected based on their electrical conductivity and ability to suppress the CO to CO₂ back reaction at the CO₂ (plasma) splitting side. The coating parameters such as atomization pressure and coating speed were optimized to obtain uniform coatings and to control the thickness. The suspension formulation was adjusted to improve the adhesion and the quality of the coating. Profilometry and microscopy were used to determine the coating thickness and porosity. Furthermore, electrochemical impedance spectroscopy were carried out.

Several YSZ discs were first coated with a dense interlayer to prevent reactions between electrolyte end electrodes. Then, an oxygen and plasma electrode layer were applied, followed by thermal treatment up to 1100 °C for 2h. The coatings show a good adhesion to the YSZ discs and look rather uniform. Both electrode layers are porous and are about 10 μ m thick, while both interlayers are dense and only of a few μ m thickness. The total electrodes impedance determined at 800 °C in dry air was reduced by using the extra interlayer to prevent interactions compared to the impedance of the cell without interlayers. The LaSr-based electrode powder and spray coated SOEC remained stable in the CO₂/CO/O₂ environment.

Author: Vafa Järnefelt

Title: The potential of CCU technologies in mitigating climate change

Abstract:

Carbon capture and use (CCU) technologies have an enormous potential in reducing environmental impacts and mitigating the climate change, however applied alone, these technologies do not have the capacity to solve the climate crisis. From a climate change mitigation perspective, avoiding current emissions should be a priority, while simultaneously directing focus on developing solutions to current challenges for which CCU and CCS technologies and their combination can be a tangible solution alongside other technologies.

The beneficial effects of the CCU technologies from the environmental aspect are highly dependable on set of variables, as well as time and space. The carbon storage varies significantly between different CCU technologies, where the storage time can range from a day to thousands of years. The net climate impact of a CCU solution also depends to a large extent on the emission intensity of the applicable processes.

Mitigation measures require long-term storage of carbon dioxide, at least for centuries or thousands of years. Thus, the so called fast 'cycling' applications of the CO_2 do not create the needed impact for mitigating the climate change but enable reducing or completely avoiding the use of fossil resources, which would otherwise end up as emissions to atmosphere. Furthermore, adoption of CCU technologies can lead to reduction of overall production emissions, i.e., positive effects can be achieved beside the CO_2 reduction also in other environmental impact categories such as reduced acidification and eutrophication.

<u>Authors</u>: Jan-Willem Könemann, Maartje Feenstra <u>Title</u>: Take-Off a novel process to synthetic aviation fuel

Abstract:

Aviation is one of the most challenging sectors when it comes to reducing CO_2 emissions. Conventional sustainable alternatives, such as electrification or hydrogen propulsion, are not expected to be suitable substitutes for long-haul flights in the coming decades. Sustainable aviation fuel (SAF) made from biogenic or synthetic origin can make sustainable aviation possible. Biogenic SAF is still the most economical alternative. Synthetic SAF will play an important role in the future as it is has an unlimited feedstock.

The EU project 'Take-Off: Production of synthetic renewable aviation fuel from CO_2 and H_2 ', launched in January 2021, will, over the next 4 years, provide a detailed picture of the technical, environmental and economic performance of a novel route to synthetic SAF. This technology route aims to deliver a highly innovative process that produces SAF from captured CO_2 via light olefins as intermediate. The result is a more selective process that produces SAF at considerable lower cost and higher energy efficiency compared to other power-to-liquid alternatives.

<u>Author</u>: Mikko Lappalainen

Title: State-of-the-art and future mapping of electrolyser technologies

Abstract:

Hydrogen production by water electrolysis is currently getting considerable attention. Electrolysis technologies are developing and becoming more feasible to produce hydrogen from green electricity. System capacities are increasing and specific investment costs are decreasing. The state-of-the-art and future mapping presents the key parameters and future development of today's most common commercial electrolyser technologies, alkaline and PEM electrolysis. In addition, strategies, plans and actions to build large-scale electrolyser projects are discussed.

Authors: Onni Linjala, Tuula Kajolinna

Title: CO2 supply options for P2X and results from carbon capture experiments

Abstract:

Carbon capture is an essential technology for Power-to-X value chains that require a supply of carbon. There are several industrial emission point sources that could be potentially harnessed to provide CO_2 for utilization. Many types of technologies, such as liquid absorbents, solid sorbents, and membranes, have been developed to extract and capture CO_2 from various gas streams. As the different emission streams and capture technologies have unique characteristics, implementation of carbon capture into an industrial process is a case-by-case matter that requires evaluating characteristics of the emission stream, technical requirements of the applicable capture technologies and the desired capture performance (i.e., CO_2 purity, capture efficiency and capture cost).

Various industrial emission streams and capture technologies have been evaluated in BECCU and E-Fuel projects to identify CO₂ supply options with high techno-economic potential in CCU/P2X routes. Furthermore, the projects include testing of carbon capture with different technologies at industrially relevant conditions for concept validation and technology development.

<u>Author</u>: Miia Nevander

<u>Title</u>: Techno-economics of the synthesis route from CO₂ and clean H₂ to polycarbonate polyols (BECCU)

Abstract:

Carbon dioxide usage to produce high-performance polymers, such as polycarbonate polyols, has accelerated in recent years. However, only a maximum of 50% of the carbon in the product originates from CO_2 , while the rest comes from fossil sources. In BECCU project, VTT together with project partners develops a novel concept to produce polycarbonate polyols, where up to 100% of carbon is originating from carbon dioxide. The process utilizes biogenic CO_2 and clean hydrogen to produce polyols via catalytic partial oxidation, Fischer-Tropsch, epoxidation and polymerization syntheses. Techno-economics of the BECCU process have been preliminarily evaluated, and the results look promising. As the calculated production costs are low compared to the anticipated selling price, the production of these specialty chemicals appears attractive. The production cost of polyols was found most sensitive to the cost of electricity needed in electrolysis and the capital investment annuity.

Authors: Sari Rautiainen, Juha Lehtonen

<u>Title</u>: Fossil-free polycarbonate polyols from captured carbon dioxide and renewable hydrogen

Abstract:

Carbon dioxide has recently been used as feedstock to produce high-quality polymers, such as flexible polyurethane foams. So far, only approximately 20 % of the feedstock has been CO₂ while the rest is fossil-based epoxides. Due to large market volumes of these polymers, millions of tons of CO₂ could be utilized annually on a global scale. VTT is developing a concept where polycarbonate polyols are produced from CO₂ and renewable power. CO₂ captured from industrial sources, hydrogen obtained from water electrolysis or as a by-product from the industry are converted into olefinic hydrocarbons in a two-step process. First carbon monoxide is produced by a combination of reverse water-gas shift (rWGS) reaction and catalytic partial oxidation (CPOX). Then carbon monoxide and hydrogen are converted to hydrocarbons by Fischer-Tropsch synthesis using a proprietary Fe-based catalyst leading to a high yield (> 45 %) of light olefins. The produced light olefins (C2-C4) are further oxidized into epoxides using hydrogen peroxide and the obtained mixture of epoxides is co-polymerized with CO₂ and a starter polyol into polycarbonate polyols to applied for polyurethanes. Our presentation focuses on the experimental work of mixed C2-C4 olefins epoxidation and subsequent mixed C2-C4 epoxides copolymerization with CO₂ to polycarbonate polyols.

<u>Authors</u>: Esperanza Ruiz, José María Sánchez <u>Title</u>: Process intensification for advancing Power-to-Fuels

Abstract:

One of the main challenges for advancing the conversion of renewable energy and CO_2 to fuels (Power-to-Fuels), via CO_2 adsorption and catalytic hydrogenation, is increasing the energy efficiency of the process and reducing the costs (CAPEX and OPEX). The tendency is to maximize the CO_2 uptake and the yield to the desired product with a minimum energy input.

In general, these processes are favoured at high pressures (high compression power) and low temperatures and are slow processes, requiring high residence times (high reactor volume), feed recycling ratios or cyclic operation (high power consumption). In addition, the presence of water may cause inhibition and hydro-thermal deactivation (lower lifetime).

An option to face these challenges is through process intensification, developing integrated systems which combine various processes in a more efficient single step that allow, for example, the selective activation of the adsorbent/catalyst by electrochemical means and in-situ generation of the H₂ necessary for the reaction, by water electrolysis (or other H+ producing reaction), in single and double chamber solid oxide electrolyte cells, respectively, operating at atmospheric pressure. Another alternative is the use of some innovative configurations, such as sorption enhanced catalytic reactors, for shifting the CO_2 hydrogenation equilibrium via in situ water adsorption, or cyclic reactive adsorption processes, using hybrid (water selective sorbent and catalyst active for CO_2 hydrogenation), dual function materials for coupling the endothermic CO_2 desorption step, with renewable H₂, with the exothermic CO_2 hydrogenation in a single isothermal atmospheric reactor, or multicatalytic materials combining active phases for different step reactions (e.g. RWGS/CO-Fischer Tropsch/hydro-isomerization).

This work reviews different innovative alternatives proposed to improve CO₂ adsorption and catalytic hydrogenation to fuels and presents CIEMAT research on these technologies.

Author: Ville Saarinen

<u>Title</u>: High temperature electrolysis and co-electrolysis for production of green hydrogen and syngas

Abstract:

High temperature Solid Oxide Cell (SOEC) technology enables electricity conversion into hydrogen with high Power-To-Gas (AC to H₂) efficiency (80-90%). SOEC technology is reversible: the same system can work both as a fuel cell and an electrolyser depending on power generation and grid stabilisation needs. Physical structure of SOEC stack consists of cells packed together and the total capacity depends on the number of cells. Also, SOEC has capability for co-electrolysis of steam and CO₂, which enables more efficient power-to-X, if integrating them as part of industrial processes. This presentation describes implementation of movable "10-foot container" size SOEC system in a 10 kW pilot demonstration scale, where special attention is paid to heat integration: heat losses are minimized with optimized Balance of plant (BoP) component design, placement and insulation. The developed system is highly instrumented enabling detailed system analysis, e.g. the calculation of enthalpy flows and efficiencies of all BoP components.

<u>Authors</u>: Georgios Sakas, Alejandro Ibanez-Rioja, Vesa Ruuskanen, Antti Kosonen, Jero Ahola, Olli Bergmann³

<u>Title</u>: Dynamic energy and mass balance model for an industrial alkaline water electrolyzer plant process

Abstract:

The presentation demonstrates a parameter adjustable dynamic mass and energy balance simulation model for a 3 MW and 16 bar industrial water electrolyzer plant process. The aim of the process simulation is to enable future optimization studies on the cost and energy efficiency of the plant. Verification of the electrochemical and thermal models was achieved using measurements from an analogous real industrial plant of the same power and pressure range having the same operating system designs. The results show that at steady-state and nominal power operation, the shunt currents were the main contributor of relatively low Faraday efficiency of 86 %, and heat loss to ambient from the stack was just 2.6 % of the total power loss. In addition, a Sankeys diagram of the power distribution in the stack and system level is demonstrated, which was based on steady-state studies of the simulation process.

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No 763909.

³ PhD Day presentation

Authors: Tabea J. Stadler, Peter Pfeifer⁴

<u>Title</u>: Syngas Production in the Kerogreen Process Chain: Development of a compact Sorption-Enhanced Water-Gas Shift Reactor

Abstract:

In the KEROGREEN project, an unconventional PtX route will be tested in a pilot scale plant. The crucial step of CO_2 activation is realized by means of CO_2 plasma splitting into CO and O_2 . The purified CO is then partly converted with steam to produce hydrogen. In this process step, two main targets are pursued in a so-called sorption-enhanced water-gas shift reactor (SEWGS): 1) providing syngas with a H₂/CO ratio of approximately two for the subsequent Fischer-Tropsch synthesis (FTS); 2) removing the by-product CO_2 and refeeding it to the plasmolysis unit.

In the FTS reactor, hydrocarbons with a wide chain-length distribution are formed. The kerosene yield can be increased in the hydrocracking unit, where long-chained hydrocarbons are cracked down to the kerosene range (approximately C10-C14).

In this contribution, the following aspects regarding the development of the compact SEWGS reactor system for continuous syngas production in the KEROGREEN project will be addressed:

- 1) Choice of materials and process conditions resulting from lab-scale experiments
- 2) SEWGS reactor design and module integration in the KEROGREEN pilot plant
- 3) Modeling concepts and results in Matlab/Simulink for dynamic process operation
- 4) Investigation of the influence of SEWGS performance on subsequent process steps

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No 763909.

⁴ PhD Day presentation

<u>Authors</u>: Marjut Suomalainen, Miia Nevander, Markus Hurskainen, Jari Pennanen <u>Title</u>: Techno-economic assessment of producing diesel from CO₂ and H₂O via coelectrolysis and Fischer Tropsch synthesis

Abstract:

The techno-economic assessment was performed for diesel produced via Fischer Tropsch synthesis and using co-electrolysis for syngas production. The assessment included CO₂ capture and purification unit based on amine-based absorption (MEA), conversion of CO₂ and water to syngas in the solid oxide electrolyser (SOEC), Fischer Tropsch synthesis, and fractionation and refining of the synthesis products to diesel and by-products. Flue gas from power plants and process heat generation was considered as the source of CO₂. Capacity for the assessment was defined by flue gas input of 315 t/h, of which 20 wt% was CO₂. Mass and energy balances were calculated using Aspen Plus steady state process modelling software and a spreadsheet software MS excel, and the parameters for mass and energy balances were based on VTT's in-house data, data from project partners or data available from literature. Preliminary result included the electrical efficiency to liquid fuels (diesel and gasoline) 48% with used assumptions. Thus, for 500 000t/a CO₂ converted to 63 000 t/a diesel and 50 000 t/a gasoline, the electricity demand was 310 MW. Operation of SOEC consumed 91% of total electricity demand. Based on pinch analysis, maximum district heat potential was 55 MW (120-70 °C), when applying heat pump for low-grade heat. Estimated CAPEX of the plant was 550 M€, of which 41% consisted of SOEC. Production cost for liquid fuels with used assumptions ranged from 1000-1700 €/t when electricity price ranged from 20-50 €/MWh. The electricity cost and the annualised investment cost were the most significant cost factors. Sensitivity analysis confirmed the importance of the electricity price to the production price of the liquid biofuels (diesel, gasoline).

<u>Authors</u>: **M.N. Tsampas,** R. Sharma, S. Welzel, M.C.M. van de Sanden <u>Title</u>: Synergistic combination of plasma and electrocatalysis for nitrogen fixation by water

Abstract:

Thermal catalysis has a central role in chemical industries, however due to the carbon dioxide emissions caused by the combustion of fossil fuels involved in such processes the electrification of these chemical transformations is a necessary response to climate change. Plasma catalysis and electrocatalysis have attracted high interest due to their potential to drive sustainable chemical processes.

Plasma catalysis can activate and selectively transform a variety of stable molecules to desired products. High energy electrons generated in plasmas can excite ground state gas-phase molecules, allowing them to react on catalytic materials at milder conditions than possible thermally. In electrocatalysis electrons are exchanged between electrodes/electrocatalysts and reactants to modify the rate of electrochemical reactions by altering the reaction pathways and decreasing the activation barriers.

In this contribution we will present an innovative combination of the two fields for the case of nitrogen fixation by water. We employ electrochemical systems with proton or oxygen ion conducting membranes for providing reacting species on electrocatalysts while RF plasmas are used to increase the reactivity of nitrogen. The spatial separation of nitrogen activation and water dissociation provides true independent parameters for performance optimization. Concentration of products is orders of magnitude higher than equilibrium and high selectivities towards desired products are observed.

<u>Authors</u>: **S. Welzel**, F.J.J. Peeters, W. Bongers, M.C.M. van de Sanden, M. Tsampas <u>Title</u>: CO₂ plasmolysis in the KEROGREEN process chain: Development of a plasma reactor module for CO production

Abstract:

The KEROGREEN process is based on an unconventional Power-to-X route. An all-electrical driven container-sized, pilot scale plant will be realised. Upstream the KEROGREEN process a plasma-based CO₂ conversion module provides the CO required in the subsequent process steps to produce the hydrogen, higher hydrocarbons and finally kerosene.

This contribution will briefly summarise the recent insights into the CO₂-to-CO conversion process by means of microwave based plasmas and elaborate further on the translation of these scientific results into engineering constraints for a container-sized plasma module. More specifically, the following topics will be discussed:

- 1) Plasma reactor design and preparation for integration with downstream gas separation.
- 2) Theoretical prediction of a suitable window of operation.
- 3) First experimental verification of the desired CO output.

4) (optionally) Outlook onto the remaining steps for successful match with subsequent process steps

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No 763909.

^{*}only publishable ones, in alphabetic order

Light olefin production from CO₂

VTT

Aki Braunschweiler

09/02/2022 VTT – beyond the obvious

Route for chemicals and polymers

- The process is based on the production of olefins through reverse watergas shift (rWGS) and Fischer-Tropsch (FT) reaction steps.
- The yield of C2-C4 olefins is maximized to be used in polyol production and higher hydrocarbons are utilized as energy carriers (waxes or fuels)
- Potential for millions of tons of sustainable carbon usage

Two step process from CO₂ to light olefins

• Step 1: Reverse Water Gas Shift (RWGS)

 $CO_2 + H_2 \rightarrow Synthesis gas (CO + H_2) and water$

- Step 2: Fischer Tropsch synthesis (FT)
 CO + 2H₂ → Hydrocarbons
- FT process conditions determine the quality of the hydrocarbons
- Light olefins = alkenes with two to five carbon atoms

Screening for optimal process conditions

RWGS results

- Conversions close to equilibrium
- Good quality syngas
- Methane selectivity 2-10 %
 - Dependent on H₂/CO₂ ratio
- No catalyst deactivation
- No carbon deposition

Comparison of Fe-Mn/Al₂O₃ and Fe-Na-S/Al₂O₃ at 320 °C, H₂/CO ratio of 2 and GHSV of 2200 (left) and 3400 h⁻¹ (right)

ECU

Comparison of Fe-Mn/Al₂O₃ and Fe-Na-S/Al₂O₃ at 320 °C, H₂/CO ratio of 1 and GHSV of 2200 (left) and 3400 h⁻¹ (right)

Process conditions – Olefin selectivity

- The best olefin selectivity was achieved with Fe-Mn/Al₂O₃ at 320 °C, GHSV of 4250 h⁻¹, and H₂/CO ratio of 1
 - Light olefin selectivity of $5\overline{2.3}$ % was achieved with O/P ratio of 3
 - The selectivity ranged from 48.6 % to 52.3 % between temperatures of 310 to 340 °C
- Fe-Na-S/Al₂O₃ catalyst functioned better under different process conditions
 - Results varied between the catalysts only by a small margin
 - Although, no methane inhibition was observed, as was initially assumed to occur

Process conditions – Olefin yield

- Olefin yield increases with temperature
- Yield mostly detemined by CO conversion
 - Highest yield at conditions where the light olefin selectivity is the lowest
- Overall yield still quite low
 - Laboratory scale causes design challenges

Conclusion and future experiments

- Production of light olefins from CO₂ demonstrated for the first time at laboratory scale
- RWGS performs well, but some technical challenges remain in the design of the FT reactor and catalyst
- Laboratory experiments to further improve conversion and light olefin yield, e.g. by product recycling
- Process simulation and kinetic modelling to help with the design problems

beyond the obvious

Aki Braunschweiler aki.braunschweiler@vtt.fi +358 40 167 9457 @VTTFinland

www.vtt.fi

Karlsruhe Institute of Technology

Defossilizing the Aviation Sector with Synthetic Fuels: Production of Aviation Gasoline

Dorela Dhamo, Jannis Kühn, Michael Rubin and Roland Dittmeyer

Institute for Micro Process Engineering

aviation fuels.

State of the art: Low Temperature Fischer Tropsch route fits the best for the production of kerosene, unbranched hydrocarbons. For aircrafts with piston engines fuels branched hydrocarbons, with a high octane number, are required. Which is the best synthesis route for fuels with a with octane number?

Global goal: Significant CO₂ reductions in the aviation sector using sustainable

Idea: Production of high octane fuels through High-Temperature-Fischer-Tropsch, Isomerization and Dimerization.

- CO_2 + Water \rightarrow CO + H_2 \rightarrow Butene \rightarrow Isobutene \rightarrow Isooctane \rightarrow Aviation Gasoline
- > Optimization of the High-Temperature-Fischer-Tropsch synthesis -> high butene selectivity
- \succ Optimization of the isomerization reaction \rightarrow high isobutene selectivity
- Coupling of High-Temperature-Fischer-Tropsch and isomerization steps:
 - ightarrow Understanding the influence of the other FT products on the isomerization step
 - ightarrow High isobutene selectivity

CONCLUSIONS AND OUTLOOK

- > High conversion can be achieved at high temperatures and low WHSV.
- > At 330 °C the selectivity of C_4 -chains compared with C_1 - C_3 molecules is lower than at 270 °C. Nevertheless, due to the higher conversion the reaction rate of the C_4 products is higher at higher temperatures.
- > Highest olefin to paraffin ratio at high temperatures, high WHSV (therefore short residence time in the reactor) and low H_2/CO ratio.
- \succ There are two side products produced at significant amounts: CO₂ and CH₄

CO₂ selectivity increases with increasing temperature
CH₄ selectivity increases with increasing temperature and H₂/CO ratio

Investigate the CO₂ effect, by adding CO₂ as feed.
Decrease CH₄ selectivity by decreasing H₂/CO ratio

KIT – The Research University in the Helmholtz Association [1] Source: Treibhausgas-Emissionen in Deutschland | Unweltbundesam

Green "Future Quota" for power-to-X fuels like green hydrogen and jet fuel

Joachim Falkenhagen Diplom-Ingenieur (univ.), Diplom-Ökonom (univ.) Windland Energieerzeugungs GmbH, Grimmstr. 9, D-10967 Berlin, <u>falkenhagen5@meerwind.de</u>

Externalities

- Climate change affects other people
- State must protect from adverse effects

Economists prefer carbon pricing

- Pigou pricing: activities with external damages shall be priced (taxed), so that the damage is taken into account by the individual actors (internalised)
- Alignment of individual interest and societal concerns
- Individual decision-making rather than goverment plans
- Motivation to avoid carbon emissions rather than motivation to circumvent regulation
- Least-cost avoidance of carbon emissions
- Early actors are keen that carbon pricing will be upheld, so that their investment can be amortized
- Relies on long-term approach, neutralized or adversely affected by other policies

Price equilibrium with carbon pricing

Price

from wikipedia, creative commons

Volume is reduced due to carbon pricing

Simplified example of total carbon emissions and their respective abatement options and costs

Perceived (short term) costs of carbon emission pricing

Carbon taxes being paid

Societal expenses from carbon pricing

Societal benefit from carbon pricing

Carbon taxes are the unwanted part of carbon taxation

It looks a better when taking into account that activities that were not yet "greened" are reduced by the (intended) cost and price effect that is produced by the quota

In a more puristic view, efforts to reduce the use of activities and products that were not yet greened by technology₁₁ also come at a cost, and their reduction is part of the measures that would form the yellow stages in ths graph

Low carbon price level: The unwanted part of the carbon tax income may dominate financially

Various measures to avoid carbon emissions

Societal benefit may nevertheless be large also with a low carbon price level

How to use the "excess money"?

Disagreement on use of carbon tax income

- Classical economists/conservatives: lower taxes in income, reduce inefficiencies that result from these taxes (double benefit)
- Social democrats/liberals/greens: make sure poor are not burdened by costs, support for poor or uniform per capita reimbursement that would lead to net benefit for most poorer sections of society
- Or fund state decarbonisation programs from carbon taxes,
 - $\circ\;$ to give more "meaning" to the tax income
 - \circ income generation as primary intention
 - \circ but with adequate carbon tax, no need for additional stimulus
 - o with progress of decarbonisation, taxes decrease, more expenses for programs

Limitation: zero carbon will lead to zero carbon tax

Laffer curve for taxation of income

Broad definition of Quota

Obligation to provide or use A in proportion Q to use, sale or production of B

Definition of Quota $A \ge Q * B$ B = adverse, obliged activity or product being used (e.g. fossil fuel) A = activity or product to be supported (e.g. e-fuel)

More elaborate $A(t_2) > Q(t_1) * B(t_1)$

- t_1 = obligation period
- t₂ = fulfilment period(s)

For an immediate blending obligation, $t_1 = t_2$. The quota Q(t_1) can increase over time.

Advantages of quotas

• Suitable for gradual, controlled increase

 whereas carbon prices or feed-in tariffs may lead to no activities, when below costs, and rather quick transition, when above costs

- Even when initial costs per unit are high, transition can be initiated without similarly high overall carbon prices
- Quota most appropriate for technology with falling costs otherwise prefer carbon pricing
- Quotas work on both fronts:
 - Implementation of "greener" technology
 - \circ Less use of old technology through price and demand effects

Disadvantages of quotas

- Cost for fulfillment of quota is not equivalent to cost load that should be achieved in accordance with cost of pollution
- Costs for fulfillment of quota raises with quota and with time, while the cost load should be the highest when the quota is still low and the share of the polluting product B is high.
- adequate lead time must be allowed from legal implementation to start of fulfillment (if no small country): If fulfillment be at the same time of consumption, no obligation and incentive during lead time

Classical quota, growth according to "meaningful" targets

Variants of Quota: Time and location of fulfillment

- Fulfill at same time of prior to use of "B"
- Fulfill after a lead period
- Fulfill during a multi-year period
- Fulfill within lifetime of equipment
- Fulfill at same place or in same market
- Fulfill anywhere, if physically connected (similar to green power)
- Fulfill anywhere

Variants of Quota: type of product supported

- "A" can be an immediate replacement of "B" (e.g. Q is a ratio of hydrocarbon e-fuel relative to kerosene).
- "A" can be an investment to replace "B" (e.g. obligatory investment to produce e-fuel).
- "A" can be a replacement of the energy content of "B" (e.g. including hydrogen that may be suitable for aircraft of the future)
- "A" can be a replacement of "B" in a broader sense (e.g. an amount of non-fossil long-distance transport, either land-based or by aircraft)
- "A" can support the replacement of "B" (e.g. research in the production of e-fuel and aircraft equipped to use novel e-fuels

Quota with "delayed" fulfillment

The delayed fulfilment allows for an **earlier** price-derived effect on the consumption of the problematic goods

Quota abolished: Who pays for capacity?

- Inadequate risk for providers of quota-fulfilling products in case of policy change.
- Also high risk in case of lowered costs for fulfillig quota with newer equipment

Reducing costs lead to higher costs

Cost (year 1)	100 M€
Lifetime	20 years
interest, profit	0 %
capital cost	5 M€ p.a. for each year 1 to 20 ??
Cost (year 2) tal cost (year 21)	80 M€ 2 M€ p.a.
	Cost (year 1) Lifetime interest, profit capital cost Cost (year 2) tal cost (year 21)

Investing in year 1 costs 20 M€ more, loses 2 M€ income in year 21. Effective costs for utilization of equipment in year 1 are 22 M€.

"Future Quota": fulfillment over several years

Advantages of "Future Quota"

- Obligation can be implemented soon
- Obligation for a high overall percentage, even if annual contribution starts low
- Funding effect: Obligation year generally pays for investment and some part of expected operational deficit
- Low risks to investors from lack of follow-up quota and due to competition with new equipment with lower costs
- Change of policy possible
- Larger immediate allocation effect: The activity or consumption obliged by quota will be reduced by larger immediate price effect
- Few government activities (except by defining quote)

More options to design quota

increasing quota

uniform end date

process steps to e-jet fuel

main procedures today

Avoid to perform opposite procedures at the same time

"Circular economy" to avoid

Power meaningfully used for electrolysis

- C = Conventional power consumption during a day
- S = Solar (or total of fluctuating renewable) power production ability
- M, A = Morning and Afternoon when solar production is less than conventional power consumption
- E = power meaningfully used for electrolysis
- B = curtailment of potential solar production, to avoid inadequate utilisation, or used for battery storage

Maybe around one half of the solar power available can meaningfully be used for the power to gas process (electrolysis).

equipment to make e-jet fuel

Costs of equipment to make e-jet fuel

These values shall just serve as example of order of magnitude and shall not be used as basis of further evaluations

	Invest power out	full load hours Years	annualised cost
Solar Farm	600 €/kW 150%	1000 14 (1/2 of 2000 h)	64 €/MWh
Hydrolysis	700 €/kW 100%	1000 14	42 €/MWh
Fischer-Tropsch	600 €/kW t.b.d.	4000 14 (flexible re. power production)	11 €/MWh
Battery, Refinery, deduction for power sold etc.	to be determined	Total (estimate)	150 €/MWh
Carbon Capture / Direct Air Capture	To be determined (quite high for carbon	not inclu capture?)	ided in total

Price of jet fuel, travel and of 100% PtL-Quota

Price jet fuel Energy content Price per energy price per energy	0,61 €/litre 34.7 MJ/litre 0.0176 €/MJ 63 €/MWh	JET FUELS	RATE USD
Typ fuel consumpt	ion	Jet fuel a1 price per barrel	\$109.2
Lufthansa group 2 Frankfurt – Palma fuel consumption	019: 3,67 l / 100pkm de Mallorca 1.265 km 46 liter/pax	Jet A1 per MT (metric ton) in USD	\$862.7
Energy content * 150 €/MWh	0.45 MWh 67 €/pax	per Gallon in USD	\$2.6
		cost per Liter in USD	\$0.691

7 day package tour in season 1000 €/P typical

=> The investment costs from a 100% power-to-liquid quota, to be fulfilled over 14 years (7% annually), net of carbon capture, would lead to a moderate increase of travel costs (incl. accomodation)

German coalition agreement for 2022-2025

- Wir unterstützen ambitionierte Quoten für Power-to-Liquid (PtL-Quoten) im Luft- und Schiffsverkehr, um einen Markthochlauf anzureizen.
- We support ambitious Power-to-Liquid (PtL) quotas in aviation and shipping to stimulate a market ramp-up.
- Wir werden ein Klimaschutzsofortprogramm mit allen notwendigen Gesetzen und Vorhaben bis Ende 2022 auf den Weg bringen und abschließen.
- We will launch and complete an immediate climate protection program with all the necessary laws and projects by the end of 2022.
- Go ahead with 100% PtL !

Question from discussion

Is a quota preferred over carbon pricing, and why?

Not generally, but carbon price may be set too low and will not promote new technologies with higher (initial) costs of carbon abatement, in particular in their early phase of implementation, like power-to-liquid processes. Therefore a combination of carbon pricing in segments with mature technology, which shall obtain broad implementation as soon as possible, and quotas in segments with still evolving technology may be more adequate. Also, carbon pricing will be less feasible in "international" sectors like aviation and shipping. Finally, political support may be stronger for quotas compared to carbon pricing, also for the reason that they avoid "extra burden" in the form of carbon prices being paid, but limit the costs to consumers to the cost of actual carbon abatement measures, in this case fulfillment of the quota.

Production of Sustainable aircraft grade Kerosene from water and air powered by Renewable Electricity, through the splitting of CO₂, syngas formation and Fischer-Tropsch synthesis

KEROGREEN Winter School

Future directions in research on Power-to-X for sustainable Chemicals & Fuels

10-11 February 2022

by Adelbert Goede, Project Coordinator

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement-Nr. 763909

Acknowledgement KEROGREEN team

Michalis Tsampas¹, Richard van de Sanden¹, Stefan Welzel¹, Waldo Bongers¹, Ben Elzendoorn¹, Paola Diomede¹, Suleyman Er¹, Bram de Wolf¹, Floran Peters¹, Alex van de Steeg¹, Erik Langereis¹, Arunkumar Pandiyana¹, Vasileios Kyriakoua¹, Marieke van Ee¹, René Schoonen¹, Roland Dittmeyer², Peter Pfeiffer², Francisco de Sales Vidal Vazquez², Tabea Stadler², Michael Rubin (Klumpp)², Andreas Patyk², Manuel Andresh², Sabine Müller², Vesna Middelkoop³, Marijke Jacobs³, Anne Dalager Dyrly⁴, Leonardo Roses⁵, Ellart de Wit⁵, Tim Böltken⁶, Ricardo Jahns⁶, Alexander Alekseev⁷, Maarten van Dijk⁸, Oskar Meyerink⁸,

- 1. DIFFER, Dutch Institute for Fundamental Energy Research (NWO)
- 2. KIT, Karlsruhe Institute of Technology (Helmholtz Association), Institutes IMVT and ITAS
- 3. VITO, Vlaamse Instelling voor Technologisch Onderzoek NV
- 4. CerPoTech, Ceramic Powder Technology AS
- 5. HyGear Technology and Services B.V
- 6. INERATEC, Innovative Chemical Reactor Technologies GmbH
- 7. LINDE AG
- 8. SkyNRG

- End-to-end test of integrated KEROGREEN process, starting from recirculated CO₂ and H₂O to sustainable aviation fuel, powered by renewable electricity
- Research and optimization of individual process steps from TRL 1 – 3 to TRL 4
- Goal > 1L / day kerosene synthesis
- Project end date 30 Sept 2022

KEROGREEN Concept & Consortium

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement-Nr. 763909

Fuel Options for Sustainable Aviation

Hydrogen: low energy density (1/3000 kerosene) – **too bulky**

- liquefied at 20K: energy density factor 4.5 lower than kerosene,
- pressurised at 700 bar: energy density factor 6.7 lower than kerosene
- -> New aircraft design, fuel system, ground handling and storage system Short haul flight may be -> Qualification will take > 10 yrs and > 100 M\$

Batteries: low specific energy (1/50), low energy density (1/14)

Long haul aviation not feasible – too heavy
 Example: Airbus A 380 would need a 14.000 ton battery
 to replace 260 ton kerosene pay-load in wings

Hybrid DLR H_2 Antares, 36 kW PEM Fuel Cell @ 80 kg, 10 kWh battery 45-60kW @ 50kg. **One seater** glider. Range 750 km, speed 170 km/hr, altitude 4 km. Why not use the train instead?

Bio Fuel: Current EU policy

 Food vs. Fuel vs. Flora trilemma – there is not enough of it current kerosene consumption ~ 5 Mbarrel/day > requires 2 to 5 x NL area to grow

A third way: CO₂ Neutral Kerosene

Why CO₂ neutral synthetic kerosene?

- Climate Neutral fuel for long haul transportation
- employing existing engine technology and infrastructure
- Long term (seasonal), large scale (EJ) energy storage and security
- Air Pollution; reduced emissions No Sulphur, no soot, lower NO_x

What are the Challenges?

- Conversion of air (N₂, H₂O, CO₂,) into energy dense fuels
- System Integration: compact, decentralised, dynamic operation
- Direct Air Capture of CO₂ to render the fuel cycle CO₂ neutral
- P2X sector coupling of renewable power to fuel and chemical sector

The ultimate goal?

Decentralised close-coupled P2X-DAC system

- **Sized to MW scale** of renewable electricity source (as opposed to GW chemical plants of today)
- Close coupled to renewable electricity source (transport of gas and oil is 20x cheaper than HV power lines)

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement-Nr. 763909

- Plasma reactor for CO₂ splitting operational (DIFFER)
- Oxygen separation successfully demonstrated at lab scale (DIFFER).
- Cell layer deposition and characterisation at VITO.
- Perovskite electrode material produced by Cerpotech
- Full scale Oxygen separator prepared for test at HyGear
- CO purifier commissioned at HyGear
- Test SE-WGS, FT and HC modules completed at KIT
- System Integration started led by INERATEC
- Bulk of integration work scheduled for 2022 at KIT site

DIFFER Team led by Stefan Welzel – Preliminary performance data!

Plasma reactor	P _{RF 915 MHz}	CO ₂ in [slm]	CO out	CO fraction	
	6 kW	70	8.9-10.4	0.127-0.148	
nominal	6 kW	50	9.3	0.186	

Plasma Reactor integration at DIFFER

KEROGREEN Plasma reactor integrated in container sized module

Diffuse and high density contracted regime

CO content scales with RF power in stochiometric ratio with O₂

Energy efficiency and yield are inversely proportional

Neutral gas temperature increases with power to over 5000K

CO₂ Plasma dissociation theoretically explained by Luca Vialetto, including turbulent transport and ionic composition in diffuse and contracted regime

Ref: Goede, A P H., et. al., EPJ Web of Conferences 79, 01005 (2014), DOI: 10.1051/epjconf/20147901005

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement-Nr. 763909

Major Challenge: Oxygen separation

Underlying research at DIFFER led by Mihalis Tsampas

Results: Oxygen separation successfully demonstrated at DIFFER: product stream of integrated plasmolysis and electrochemical O_2 separation contains **91% less O₂ and 138% more CO** than plasmolysis alone. Unexpected **cell stability improvement** compared with electrolysis alone. *To be published: Journal of CO₂ Utilisation*

Theory O₂ separation by DIFFER

Density Functional Theory (DFT) calculations by Suleyman Er (DIFFER) Formation and Migration of Oxygen vacancies

- Oxygen vacancy created in bulk electrolyte
- Oxygen atoms from perovskite surface relocate to occupy bulk vacancies electrolyte
- O vacancy formation in SFM requires less energy than in LSZT
- But backreaction to CO₂ is less for LSZT
- SFM selected for KEROGREEN

Energy required to create an oxygen vacancy on the surface, subsurface, and bulk layers of SFM and LSZT. The formation energies of O-vacancies are calculated as weighted average of all the O sites.

Cell layer material development at VITO

XRD of surfaces
LSZT/GDC

SEM/EDS of surfaces and X-section
Image: Construction

Long-term exposure:
Image: Construction

LSZT/GDC stable
Image: Construction

SFM/GDC small changes
Image: Construction

Spray coating technology development to meet specifications for uniformity, porosity and adhesion

Full scale cells obtained current densities under air at 700- 750 °C are close to the KEROGREEN targets i.e. $J = 0.25-0.30 \text{ A/cm}^2$

Analysis of production costs and scale up of SOC based on full scale stack of 0.56 m² SOC SFM surface area for 0.1 kg kerosene/hr approx. 18k€/m²

led by Stefan Welzel at DIFFER

Staged delivery:

- Powders supplied by Cerpotech (free issue item)
- Half cells and button cells for characterization
- 2 Small size stacks (500 cm²), two types plasma electrode
- 1 Full size (5000 cm²) Gas Separator

CO purifier by HyGear

Feed gas: CO/CO₂ mixture Feed range: 15-90 slm Feed Pressure: 0-200 mbar Product pressure: 9 bar

CO yield after purification 78% at 98% purity

Preliminary performance data : 50 and 70 slm CO₂ input at plasma reactor. Oxygen separation not included!

CO ₂ in reactor	CO out reactor	Fraction CO PSA	PSA CO yield	CO out [slm] @ 98% pure
50 slm	9.3 slm	0.186	78%	0.78 x 0.186 x 50 = 7.25
70 slm	10.4 slm	0.148		0.78 x 0.148 x 70 = 8.08

Water Gas Shift reactor at KIT

Water Gas Shift reaction, enhanced by CO_2 sorbent and catalyst.

- Developed for dynamic operation enabling periodic switching between six reactive adsorption and regeneration channels
- **Dynamic modeling** for dynamic switching between absorption and regeneration channels to optimize H₂ yield
- Presently being **integrated** at the KEROGREEN pilot plant.

SEWGS module: Construction finalization, Testing, Commissioning

KEROGREEN Winter School 10-11 February 2022 by Adelbert Goede

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Aareement-Nr. 763909

Fischer-Tropsch reactor INERATEC

Fischer-Tropsch reactor based on high heat transfer micro-structured reactor, with Co-based catalyst.

- **Compact and modular**. Upscaling through channel multiplication.
- Heat removal and integration at system level (SOEC heating)
- 3D printing being pioneered at KIT

FT-HC reactor lay-out.

SE-WGS installed and tested

KEROGREEN Winter School 10-11 February 2022 by Adelbert Goede

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement-Nr. 763909

Hydro-Cracking reactor at KIT

Hydro-Cracking : hydration of the FT crude, isomerization to alkanes, no aromata, no alkenes.

- CO₂ acts as diluent with regard to reaction on the HC catalyst, needs to be improved
- C-distribution too wide
- Net production of hydrocarbons in HC strictly limited to C14
- Alcohols contained in the aqueous phase of the FT crude are drastically reduced
- Diluting effect of CO₂ has to be considered

Hydrocracker Installed and testing

System modelling

System performance simulation by INERATEC and KIT Implementation of detailed models for:

- Plasmolysis and oxygen separation (DIFFER)
- CO purification unit (HyGear).
- SE-WGS (KIT-IMVT)

Integrated system model to calculate CO₂ utilization and energy efficiencies Simulation results are input to LCA studies by KIT-ITAS

Overall system performance with **no** Oxygen extraction included in conversion shows ~ 1 slm kerosene fuel. Input O₂ data planned for March 2022

CO ₂ in reactor	CO 98% PSA out	CO:2H ₂ WGS in	FT crude out	HC fuel out	Overall crude	HC fuel
50 slm	7.25 slm	0.3	0.92	0.5	7.25x0.3x0.92 = 2 slm	1 slm
70 slm	8.08	0.3	0.92	0.5	8.08x0.3x0.92 = 2.23 slm	1.11 slm

KEROGREEN container sized plant at Karlsruhe Inst Technology

Integration KEROGREEN system started!

KEROGREEN Winter School 10-11 February 2022 by Adelbert Goede

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement-Nr. 763909

Development of material and energy flow and cost models For more information attend PhD session Manuel Andresh Friday afternoon

Results

- GWP reduction of at least 70% possible with O₂ as by-product
- Availability of plant especially relevant for economic feasibility
- Higher price of offshore wind electricity evened out by higher availability in comparison to other electricity sources
- Utilization of electricity from photovoltaics for KEROGREEN in Germany not competitive in terms of GWP (greenhouse warming potential)
- Assessment of alternative locations, also for wind power

KEROGREEN produced CO₂ neutral kerosene **meets climate and environmental requirements** of:

- UN-ICAO, EU Green Deal and COP-26 Glasgow 2021
- UN CORSIA (Carbon Offsetting and Reduction Scheme for International Aviation) 2019
- EC-RTD-CETP-Clean Aviation (European Partnership under Horizon Europe) 2020

KEROGREEN Synthetic Fuel technology also relevant for

- Fuel for shipping and long haul road transport
- Long-term, Large-scale Energy Storage,
- Grid stabilization at increasing share of intermittent power

- CO₂ plasma reactor 6 kW commissioned for integration
- SOEC underlying research, development, procurement
- CO purification unit ready for integration
- Integration WGS-FT-HC module in hand
- Sustainability studies underway
- Project target 0.1 kg/hr kerosene within reach if oxygen can be successfully removed

Any Questions ?

SROGAL ER

DIFFER Dutch Institute For Fundamental Energy Research De Zaale 20, Eindhoven, the Netherlands www.differ.nl

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement-Nr. 763909

Hydrogen and the Net-Zero Emissions 2050 Scenario

Dr Ilkka Hannula – Senior Energy Analyst

11 Feb 2022

International Energy Agency

Where are we along the road to Net Zero by 2050?

For the first time, today's pledges – if implemented on time and in full – would keep the rise in global average temperatures in 2100 to below 2°C, but there's still a large gap to 1.5°C

IEA 2022. All rights reserved.

190

Targets alone are not enough

After the largest ever decline due to the Covid-19 crisis, global CO2 emissions are set to increase by nearly 5% in 2021, approaching the 2019 peak, as demand for coal, oil & gas rebounds with the economy

IEA 2021. All rights reserved.

190

Set near-term milestones to get on track for long-term targets

IEA 2021. All rights reserved.

lec

Prepare for the next phase of the transition by boosting innovation

sectors where emissions are hardest to abate

IEA 2022. All rights reserved.

led

Use of low-carbon hydrogen expands rapidly in all sectors in the NZE C

The dawn of low-carbon hydrogen production

led

Low-carbon hydrogen costs are falling

The first steps for international hydrogen trade have been taken

led

CCUS plays significant role in industry

IEA 2021. All rights reserved.

Ie(

- Hydrogen had many false starts but there are strong signals for the energy sector that this time could be different – momentum is turning into action:
 - A growing number of governments is defining the role of hydrogen in their energy strategies
 - Industry is moving to seize the opportunity and is increasing hydrogen-related investments
 - International cooperation has taken centre stage
- Many factors are at play that may explain the momentum; efforts to mitigate climate change and the growing number of net zero commitments are important factors
- The future for hydrogen looks bright but whether on-the-ground progress is fast enough and going in the direction required for hydrogen to play its part in addressing climate change is a key question

IEA 2021. All rights reserved.

Peter Holtappels

Kerogreen Winterschool 2022

10 February 2022 DTU Energy

Kerogreen Winterschool 2022 2

DTU

Organic Electrosynthesis: a sustainable route to polymers and other high value chemicals?

Peter Holtappels, DTU Energy, peho@dtu.dk

With contribution from:

- Christos Chatzichristodoulou
- Khurram S.Joya
- Marie Lund Traulsen
- Florian Gellrich
- Mathias Christensen
- David Tran

2015 - 2019 EU Grant Agreement 677471

DTU

Brief historical overview: Organic ElectroSynthesis

- Faraday 1834: to demonstrate the validity of his Faraday constant (Q= nNF)
 - $-C_2H_6$ formation from NaCH₃COO \rightarrow reduction of carboxylic acid group
- Kolbe reaction 1849 -54: Alkane synthesis from fatty acids
 - $\text{R-COO}^- + \text{R-COO}^- \rightarrow \text{R-R} + 2 \text{ CO}_2 + 2 \text{ e}^-$
 - Industrially important process until 1980th
- Bayer 1890:
 - Synthesis of Anilin and phenylhydroxylamin synthesis
- Baizer / Monsanto 1960:
 - Nylonfibre production (from acetonitrile by electrohydrodimerization)
 - Industrially important process until 1980th

Green Chemistry

- Integration of renewable electricity into chemical processes
- Utilization of "green" electrons as reactants
- Process intensification through paired reactions
 - Tandemreactors
- Hydorgenation
- De-hydrogenation
- Oxidation
 - Potential to omit OER

Fontana-Uribe et al. Green Chem., 2010, 12, 2099–2119

Valuable building blocks from biomass

Table 3 - Down Selection - Top 30 Results

Carbon Number	Potential Top 30 candidates
1	Carbon monoxide & hydrogen (syngas)
2	None
3	Glycerol, 3 hydroxypropionic acid, lactic acid, malonic acid, propionic acid, serine
4	Acetoin, aspartic acid, fumaric acid, 3-hydroxybutyrolactone, malic acid, succinic acid, threonine
5	Arabinitol, furfural, glutamic acid, itaconic acid, levulinic acid, proline, xylitol, xylonic acid
6	Aconitic acid, citric acid, 2,5 furan dicarboxylic acid, glucaric acid, lysine, levoglucosan, sorbitol

Werpy T., Petersen G., *Top Value Added Chemicals from Biomass, Volume 1 Results of screening for Potential Candidates from Sugar and Synthesis Gas*, **2004** Pacific Northwest National Laboratory, National Renewable Energy Laboratory, http://www1.eere.energy.gov/biomass/pdfs/35523.pdf

Paired electrochemical reactions

BIOMASS Electrolysis to Chemicals & Polymers

Opportunities: Biomass Conversion

FERRA

DTU

BIOMASS Electrolysis to Chemicals & Polymers

Why Biomass Conversion

Combine Ox./Red. of bio-mass derivatives (HMF + xylitol) to PEF polymer precursors (FDCA+ EG)

Catalyst Synthesis:

Metal nano-particles (MNPs)

Electrode fabrication:

MNPs on HSA 3D electrodes (TNTs/CNTs)

<u>Testing</u>:

at high T, P

Electrode upscaling

individual electrode heating

prototype development and demonstration

<u>LCA</u>

TERRA - Testing

BIOMASS Electrolysis to Chemicals & Polymers

5-HMF Electrooxidation into 2,5-FDCA

DTU

DTU

TERRA – HMF electro-oxidation

• FDCA selectivity of 75% at 1.575 V vs. RHE at 75°C (corresponding FDCA FE of 60%) @50% HMF Conversion

Other activities on HMF

Electrocatalytic Conversion of Furanic Compounds

Youngkook Kwon,^{†,‡} Klaas Jan P. Schouten,^{†,§} Jan C. van der Waal,[§] Ed de Jong,[§] and Marc T. M. Koper^{*,†}

[†]Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
[‡]Carbon Resources Institute, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
[§]Avantium Chemicals, Zekeringstraat 29, 1014 BV Amsterdam, The Netherlands

10 February 2022 DTU Energy

Project idea "OrganicES", IRFD, DK, start Jan 2022

Paired reactions in a flow reactor?

Scientific aspects and research objectives

Acknowledgement

Thank You for Your attention

David Tran

Christos Chatzichristodoulou

Khurram S.Joya

Marie Lund Traulsen

Florian Gellrich

Mathias Christensen

Production of Sustainable aircraft grade Kerosene from water and air powered by Renewable Electricity, through the splitting of CO₂, syngas formation and Fischer-Tropsch synthesis

Development of thin electrode layers by spray coating for solid oxide cells

M. Jacobs^a, L.O. Jøsang^b and V. Middelkoop^a

^a Flemish Institute for Technological Research – VITO, Boeretang 200, B-2400 Mol, Belgium
 ^b Ceramic Powder Technology AS – CerPoTech, Kvenildmyra 6, N-7072 Heimdal, Norway

Winter school, February 10th 2022, online

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under GA-Nr. 763909

INERATEC

Winter school, February 10th 2022, online

H2020 KEROGREEN project

- Partners: DIFFER (NL), CerPoTech (NO), HyGear (NL), KIT (DE), INERATEC (DE) and VITO (BE)
- Focus on O₂ separator
 - Based on solid oxide cell
 - Perovskite based electrodes

Winter school, February 10th 2022, online

Oxygen separator

- General
 - High oxygen fluxes
 - Stability
- Both electrodes
 - Mixed ionic and electronic conductivity
- Electrolyte
 - Oxygen ion conductivity
 - Low resistance
- Plasma electrode
 - Poor activity for CO oxidation

Selected materials

- Electrolyte: 8-YSZ
- Oxygen electrode: $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ (LSCF)
- Plasma electrode: La_{0.4}Sr_{0.4}Zn_{0.12}Ti_{0.88}O₃ (LSZT)
- Interlayer: $Ce_{0.8}Gd_{0.2}O_2$ (GDC)

Plasma electrode 1) Electrochemical O_2 separation: $O_2 + 4e^- \rightarrow 2O^{2-}$ 2) CO_2 electrolysis: $CO_2 + 2e^- \rightarrow CO + O^{2-}$ 3) CO oxidation: $2CO + O_2 \rightarrow 2CO_2$

Powder manufacture by spray pyrolysis

Major manufacture steps:

- 1) Prepare water-based solution, containing required cations
- 2) Spray the solution into hot furnace
- 3) As-sprayed powder is postprocessed, i.e.
- Calcined:
- Milled;
- Dried:
- Sieved;
- Analyzed by XRD, BET, SEM

solution

SSA in range 1-50 m²/g

Manufacturing/characterisation of powders

Winter school, February 10th 2022, online

Why spray coating?

	Suspension viscosity	Scalable	Substrate geometry	Thickness control
Spray coating	Low	Yes	Non-flat	High
Dip coating	Wide range	Yes	Non-flat	Medium
Spin coating	Wide range	No	Flat	Medium
Screen printing	High viscosity	Yes	Flat	High
Slot-die coating	Wide range	Yes	Flat	High
Tape casting	High viscosity	Yes	Flat	Low
CVD	/	No	Flat	High

Spray coating

- Greater **control** of the **thickness**
- Accommodation of large substrates
- Ability of **porous layers** on planar and tubular substrates

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under GA-Nr. 763909

Speed

Height

Spray coating: principle

- Variable parameters:
 - Atomisation pressure
 - Flow rate of suspension
 - Linear speed of spray gun
 - Height of spray gun (distance between spray nozzle and substrate)
 - Needle opening
 - Needle cap

Spray coating: optimization of parameters

Effect of linear speed

2 m/min

1 m/min

0,5 m/min

Effect of height

4 cm

6 cm

Effect of atomization pressure

0,5 bar

1 bar

2 bar

Effect of flow rate

1,5 ml/min

3 ml/min

Suspension - composition

- Composition of suspension based on literature and previous knowhow
 - Solvent: ethanol
 - Allows fast drying of coating layer so that multiple coating layers can be applied shortly after each other
 - Additives: Ethyl cellulose, Polyvinylpyrrolidon, Polyvinyl butyral
 - To have optimal viscosity for spraying
 - To avoid agglomeration of suspension
 - To have good adhesion on substrate
 - To obtain homogeneous coatings

	EC (m%)	PVP (m%)	PVB (m%)
KER-LSCF-000	19,0	1,2	0
KER-LSCF-001	19,0	0	1,2
KER-LSCF-002	18,2	0	5,7
KER-LSCF-003	0	1,2	19,0
KER-LSCF-004	0	5,7	18,2
KER-LSCF-005	8,7	0	26,2
KER-LSCF-006	18,8	1,2	1,2

This project has received funding from the European Union's Horizon

2020 Research and Innovation Programme under GA-Nr. 763909

Suspension - composition

- Each suspension was spray coated with different speeds on glass substrate, just one layer
- At one speed, 3 coating layers were applied
- Thickness of coating was determined by optical profilometry

Line scan profilometry

Suspension - composition

→ Addition of extra binder PVB seems to improve coating, visually and its thickness

001

 002
 003
 004
 005
 006

Winter school, February 10th 2022, online

Suspension - milling

VIto

Why milling?

- To spray without blockages
- To improve homogeneity
- To have dense interlayer after thermal treatment

0 min	LSCF	GDC	LSZT	
d10 /µm	0.54	0.51	0.43	
d50 /µm	7.59	17.69	1.08	
d90 /µm	17.63	44.81	7.89	
5 min	LSCF	GDC	LSZT	
<mark>5 min</mark> d10 /μm	LSCF 0.28	GDC 0.33	LSZT 0.37	
<mark>5 min</mark> d10 /μm d50 /μm	LSCF 0.28 0.47	GDC 0.33 0.61	LSZT 0.37 0.68	

 \rightarrow Large reduction of particle size, even after 5 min of milling

Suspension - milling

Why milling?

- To spray without blockages
- To improve homogeneity
- To have dense interlayer after thermal treatment

STO GAR

Winter school, February 10th 2022, online

Spray coating of SOC

Microstructural characterisation of SOEC

SEM images of cross-section of YSZ discs coated with GDC thin dense interlayer, LSCF (10-15 μm) oxygen electrode and LSZT (20 μm) as plasma electrode

EIS – set-up/conditions

- EIS: technique to measure the impedance of a system in dependence of the AC potentials frequency
 - Used to analyse the performance of SOFC/SOEC/batteries
 - Often plotted by a Nyquist plot
- Testing conditions:
 - Atmosphere: Dry Air (flow rate: 50 cc/min)
 - Temp: 800°C-500°C (ramp rate: 3 °C/min)
 - Steady state: 24 hours
 - EIS characterization: 2 MHz to 0.01 Hz

EIS - results

Reduced resistance

- By increasing temperature
- By adding GDC interlayer

Winter school, February 10th 2022, online

Stability test under CO₂/CO/O₂ atmosphere (=plasma atmosphere)

- Why: Test was done to simulate long time exposure to plasma environment and to study stability of plasma electrode
- How: 2 weeks exposure to CO₂/CO/O₂ gas atmosphere at 800 °C
 - XRD of surfaces
 - SEM/EDS of surfaces and cross-section

Different solid oxide cells in the reactor for the stability test

Stability test under CO₂/CO/O₂ atmosphere (=plasma atmosphere)

LSZT based electrolyte supported cell:

- Visual: No changes visible
- SEM/EDS: No interactions between the layers observed on EDS mappings
- XRD: No phase changes can be observed after thermal and chemical stability test

Sr

Ti

Before

After

------ LSZT VITO cell after thermal treatment

Ce

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under GA-Nr. 763909

— LSZT VITO cell after reactor test

After thermal & chemical stability test

La

Gd

Upscaling

- Upscaling of spray deposition of larger SOEC substrates
 - Step in Y-direction is important to have homogeneous coating (X: coating direction)
- Development of tubular SOECs
- Development of electrode based SOECs

Oxygen electrode on 50 x 50 mm² cells

GDC coating on 200x200 mm² glass substrate

Tubular SOEC

Conclusions

- Oxygen separator based on SOEC was selected for the removal of oxygen from the plasma atmosphere
- Single phase electrode powders were successfully manufactured by spray pyrolysis
- Spray coating was used for the deposition of the electrode layers of the SOEC
- Uniform, thin porous electrode layers and dense interlayer were obtained by:
 - Optimization of the coating parameters (atomization pressure, coating speed,...)
 - Optimization of the suspension properties (formulation, particle size, viscosity)
- Upscaling of spray coating process is possible to obtain larger SOEC and tubular SOEC
- SOECs with interlayers exhibited a lower resistance than those without interlayers

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under GA-Nr. 763909

Thank you for your attention!

Marijke Jacobs VITO, Boeretang 200, 2400 Mol, Belgium Marijke.jacobs@vito.be www.vito.be

Vafa Järnefelt

VTT

Research Scientist The potential of CCU technologies in mitigating climate change Winter School

#VTTBeyondtheObvious @vafajarnefelt

BECCU project's CCU concept for the production of polyols

13/05/2022 VTT – beyond the obvious

VTI

BECCU project's CCU concept for the production of polyols

- Developing the recovery of biogenic carbon dioxide and its use in the manufacture of specialty chemicals for the production of (polycarbonate) polyols.
- Polycarbonate polyols are used in the manufacture of various polyurethanes such as
 - Adhesives
 - building insulation boards
 - and goods (e.g., as shoes and mattresses).

Environmental sustainability of the BECCU concept

Objective: to quantify the carbon footprint and other relevant environmental impact categories (e.g., fossils resource depletion, acidification, eutrophication, toxicity) to evaluate the environmental sustainability of various alternatives of BECCU solution in comparison to conventional ways to produce polyols.

13/05/2022 VTT - beyond the obvious

The challenges of the environmental sustainability assessments of the CCU technologies VTI

Life cycle approach

13/05/2022 VTT – beyond the obvious

Why life cycle assessment (LCA)?

Enables the minimization of the overall environmental impacts

- Systematically made overview → risks of shifting the potential burdens
 - between different life cycle stages or individual processes
 - between different environmental impacts can be recognized and possibly avoided
- Sustainability of a product can be ensured already in the product development phase (Eco Design)

Tiina Pajula

CCU LCA challenges

- No standartised way to carry out CCU LCA studies
- Asssessment results of the same CCU technology don't match due to lack of standartisation, hence the transparency in the methodological choices
 - Makes hard to compare 'apples-to-apples'
- Comparison of the CCU technology to traditional one, the role of system boundary, multi-functionality and the system expansion
- Low TRL and its effect on the assessment and its results

Low TRL technologies

- Identification of the low TRL technologies
 - Technology maturity level affects the study's scope and goal, the questions that can be answered; data availability and study limitations.
 - The maturity of the product system shall equal the lowest maturity of the system elements / unit processes.
- For low TRL processes, studies are most useful for hot spot analysis. However, a comparison between a low TRL CCU technology and a high TRL reference technology can still reveal valuable insights to guide research.

Table 2. Characterizing Technology Readiness Levels for the Chemical Industry (excerpt from [15])

TRL	Phase	Title	Description
1	Research	Idea	Basic principles observed and reported, opportunities identified, basic research translated into possible applications
2		Concept	Technology concept and application formulated, patent research conducted
3		Proof of concept	Applied laboratory research started, functional principle / reaction (mechanism) proven, predicted reaction observed (qualitatively)
4	Development	Preliminary process development	Concept validated in laboratory environment, scale-up preparation started
5		Detail process development	Shortcut process models found, simple property data analyzed, simulation of process and pilot plant using bench scale information
6		Pilot trials	Pilot plant constructed and operated with low rate production, products tested in application
7	Deployment	Demonstration & full-scale engineering	Parameter and performance of pilot plant optimized, (optional) demo plant constructed and operating, equipment specification incl. components conferrable to full-scale production
8		Construction and start-up	Products and processes integrated in organizational structure (hardware and software), full-scale plant constructed
9		Continuous operation	Full-scale plant audited (site acceptance test), turn-key plant, production operated over the full range of expected conditions in industrial scale and environment, performance guarantee enforceable

Applied research is conducted mainly in TRLs 1-3 but often expands into later TRLs; please note that in Table 2, basic research is seen prior to the TRL phases as it is not driven by economic targets. Deriving ideas

TEA & LCA Guidelines for CO₂ Utilization

12

Emissions of the CCU system

The most crucial part is taking into account

- all CO₂ that is released into atmosphere and;
- understand impact on other environmental impact categories such as toxicity, acidification, fossils resource depletion
- thus, avoid shifting the burden from one category to another

Fig. 1 The flow chart of the entire CCU system emphasizes the two subsystems of CO_2 capture and CO_2 utilization and classifies the feedstock CO_2 (in bold circle) as economic flow, not as negative emission.

(von der Assen et al. 2013)

The indirect emissions the CCU technologies

- The use of CCU technologies is not completely emission free due to its indirect emissions.
- The environmental impact results of the CCU products include the indirect emissions caused from the use of energy and other raw materials and substances in the process.
- The energy source used in the processes (e.g., natural gas energy, wind power, nuclear energy, solar energy), has a significant impact on the environmental performance of the whole concept under the assessment.

Classification of CO2 capture systems according to carbon origin

Fig. 2 Classification of CO₂ capture systems according to carbon origin: (a) CO₂ capture from non-biogenic point-sources includes capture from power plants and industrial processes; (b) CO₂ capture from biomass combustion or conversion processes and (c) CO₂ capture from ambient air. In cases of (a) and (b), a valuable product besides feedstock CO₂ is always co-produced. Only case (b) and (c) can potentially act as negative emission technologies.

(von der Assen et al. 2013)

13/05/2022 VTT – beyond the obvious

Comparison of a CCU and conventional product

Reference production CO.-source main reference reference product (no capture) production product CCU production CO, based CO, based main CO,-source product production product

Figure 9: Comparison of a CCU production and a reference production: CCU system produces a main product besides CO₂-based product, i.e., the CCU system has additional functions not included in the functional unit (dashed green line). Thus, the conventional and CCU system are not comparable due to different functions.

Figure 10: System expansion approach to compare a CCU production with a conventional production: the main product of CO₂-source is included in functional unit and the status-quo production system is expanded with the conventional production of the main product without carbon capture

13/05/2022 VTT – beyond the obvious

CO₂ initiative, TEA & LCA guidelines for CO₂ utilization

- The Techno-Economic Assessment and Life Cycle Assessment Toolkit
- Techno-Economic Assessment & Life Cycle Assessment Guidelines for CO2 Utilization (Version 1.1) (Zimmerman et al. 2020)
 - Link to the document
 <u>https://deepblue.lib.umich.edu/han</u>
 <u>dle/2027.42/162573</u>

Figure 5: Decision tree for the selection of system boundaries

The potential of the CCU technologies in mitigating the climate change

13/05/2022 VTT – beyond the obvious

VTI

The potential of the CCU technologies in mitigating the climate change

- the use of CO2 does not always reduce emissions or lead to net climate benefits, when the indirect and other effects of technology are considered
- CO2-based fuels and chemicals, can be classified as 'cycling'. They circulate the carbon through industrial systems within timescales of days, weeks, months or, at best, decades.
- CO2 storage duration
 - The persistence of carbon storage varies from one CCU technology to another, where the storage time can range from a day to thousands of years.
 - The net climate impact of a CCU solution also depends to a large extent on the emission intensity of the applicable processes.
 - Mitigation measures require long-term storage of carbon dioxide, at least for centuries or thousands of years.
- The carbon cycle of short-term CCU applications should be closed to achieve net zero emissions, meaning that CO2 should be taken (as a resource) directly from the atmosphere by DAC (direct air capture) technologies or stored permanently by various means of land sequestration, such as photosynthesis) or by mineralization
 - The use of DAC involves a wide range of challenges, such as significant energy need, which must be zeroemission for the solution to have a mitigating effect on climate change
 - Permanent storage solutions have their own risks related to the release of carbon

The potential of the CCU technologies in mitigating the climate change

- Fast 'cycling' applications of the CO2 do not create the needed impact for mitigating the climate change but enable reducing or completely avoiding the use of fossil resources, which would otherwise end up as emissions to atmosphere.
- CCU technologies can lead to reduction of overall production emissions, i.e., positive effects can be achieved beside the CO2 reduction also in other environmental impact categories such as reduced acidification and eutrophication

(Zimmermann et al. 2018)

13/05/2022 VTT – beyond the obvious

The potential of the CCU technologies in mitigating the climate change

- Carbon capture and use (CCU) technologies have an enormous potential in reducing the environmental impacts and mitigating the climate change, however applied alone, these technologies do not have the capacity to solve the climate crisis.
- From a climate change mitigation perspective, avoidance and reduction of the current emissions should be a priority, while simultaneously directing focus on developing solutions to current challenges for which CCU and CCS technologies and their combination can be a tangible solution alongside other technologies.

Fig 2. CCUS hierarchy by Hannula and Reiner (2017).

THANK YOU.

Vafa Järnefelt vafa.jarnefelt@vtt.fi #VTTbeyondtheobvious

VTT

19

#Circulareconomy

Take-Off

Production of synthetic renewable aviation fuel from CO₂, water and renewable electricity

Jan-Willem Könemann KeroGreen Winter school 09-02-2022

TNO innovation for life

The TAKE-OFF "Production of synthetic renewable aviation fuel from CO₂ and H₂" project, that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°101006799.

PUBLIC

Why Sustainable Aviation Fuels "SAF" ?

And why "synthetic" SAF?

SAF, sustainable kerosene, is the only short to medium term possibility to make aviation sustainable.

- The kerosene market is huge, multiple technology routes will have to contribute
- Bio-kerosene is important and cheaper on short term, but is limited in feedstock
- Synthetic kerosene produced from CO₂, H₂O and electricity - is currently still more expensive but has an unlimited feedstock
- Synthetic kerosene has the potential to reach near 100% green house gas reduction
- The importance of synthetic-SAF is underlined by governmental targets, incentives and market analysis
- Technology development is necessary to reduce costs

Clean Skies for Tomorrow Sustainable Aviation Fuels as a Pathway to Net-Zero Aviation, November 2020, World Economic Forum in In Collaboration with McKinsey & Company <u>https://www.mckinsey.com/industries/travel-logistics-and-infrastructure/our-insights/scaling-sustainable-aviation-fuel-today-for-clean-skies-tomorrow</u>

Total shares in the fuel mix (in %)	2025	2030	2035	2040	2045	2050
SAF ramp up out of which:	2	5	20	32	38	63
Biofuels (including Part A and Part B biofuels)	2	4.3	15	24	27	35
Specific sub-mandate on RFNBOs ¹²⁹	-	0.7	5	8	11	28

Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on ensuring a level playing field for sustainable air transport: <u>https://ec.europa.eu/info/sites/default/files/refueleu_aviation_-</u>_____sustainable_aviation_fuels.pdf

Take-Off Technology Concept

Sustainable aviation fuel from CO₂, water and renewable electricity

The TAKE-OFF project explores the development of a unique technology based on the conversion of $CO_{2,}$ H₂O and renewable electricity to SAF via olefins as an intermediate.

- Innovative catalyst and reactor technologies are developed and demonstrated under industrially relevant conditions
- Objective is to significantly increase efficiency and reduce cost compared to the existing Power-to-Liquids benchmark

Take-Off route vs. the Fischer-Tropsch benchmark

The Fischer Tropsch route to kerosene is industrially proven at large scale and certified for use as aviation fuel. This route is therefore the industrial benchmark.

The main feature of the Take-Off route is that it is selective to the desired kerosene blend. Side products are avoided leading to a more selective use of H_2 towards the final kerosene end product

Main steps in (i) Fischer Tropsch (ii) Take-Off via MeOH and (iii) Take-Off

Take-off consortium and advisory board

Partners shown at their main work package

Advisory Board

Expected impact of the Take-Off project

- Advance the development of processes for the conversion of CO₂ to methanol, dimethyl ether (DME) and light olefins (ethylene) from TRL-3 to TRL-5. These intermediate products to the SAF end product have their own markets
- Advance an innovative olefins to jet fuel process from TRL-3 to TRL-4 and investigate compliance and emissions of the produced SAF
- Demonstrate the entire technology chain for Take-Off's next generation jet fuel technology
- Techno-economic and environmental assessments to support Take-Off's claims on efficiency, sustainability and costs reduction

Stay in Touch with Take-Off

Current communication and dissemination activities

- Official website launched: TAKE OFF Sustainable Aviation Fuel from CO2 (takeoff-project.eu)
- Social media: <u>https://www.linkedin.com/company/take-off-euproject</u>
- Take-Off advisory board is open for relevant industry participants
- Dissemination activities via participation in several conferences, scientific papers, and stakeholders meetings

Jan-Willem Könemann Jan-willem.konemann@tno.nl

Jan-Willem Konemann Sr. Business Developer - Energy Transition in Industry at TNO

The TAKE-OFF "Production of synthetic renewable aviation fuel from CO₂ and H₂" project, that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°101006799.

E-fuel and BECCU projects

Research Professor Juha Lehtonen, VTT

09/02/2022 VTT – beyond the obvious

VTT Key Competences – Green Hydrogen and Power-to-X

Cutting-edge professionals

- 50 persons in hydrogen (production, storage and fuel cells)
- 30 persons in e-fuels synthesis & catalysis
- 30 persons in fuel testing and emissions
- 20 persons in TEA

Diverse reserach infrastructure

- E-fuels pilot (Mobile Synthesis Unit)
- Catalyst laboratories
- Engine lab for fuel and engine test
- Fuel cells and electrolyzers
- 5G pilot networks in order

Established networks

- Business Finland, ministries and EU as public sector networks
- Leading industry companies and NGOs as private sector partners
- Universities and research organizations as R&D partners

Broad IPR portfolio

- Hydrogen
 - 8 patents on electrolysis and fuel cells
- Synthesis
 - 15 patents on gas cleaning, catalysts, C1 reactions and CCU

BUSINESS FINLAND

E-fuel Business Finland co-innovation project

Challenge

Efficient and profitable production of drop-in transportation fuels by Power-to-X

Our proposed solution

Combining of high temperature electrolysis and Fischer-Tropsch synthesis to obtain drop-in paraffinic fuels with high efficiency

Our vision

Year 2050, e-fuels will cover 20-30 % of final energy demand in transportation in Europe

E-fuel concept

* Fischer-Tropsch **Catalytic partial oxidation / Reverse water-gas shift

The main objectives

- To demonstrate production of drop-in paraffinic e-fuels in bench scale with high efficiency by combining and integrating high temperature electrolysis and Fischer-Tropsch synthesis
- 2) A readiness to scale up the concept after 2-year project to a production scale of 10 kton/a

Specific objectives

- Development of thermal integration of solid oxide electrolysis cell (SOEC)
- 2. Development of catalytic partial oxidation (CPOX)/reverse water-gas shift (RWGS) concept integration
- 3. Development of integrated concept of CO₂ capture, electrolysis and FT synthesis
- 4. Demonstration of integrated concept in bench scale (>1000 hrs)
- 5. Demonstration of drop-in paraffinic e-fuel production (up to 300 kg) and usability
- 6. Ensuring the environmental and other impacts of produced paraffinic e-fuel

Project structure and external collaborations

Duration 1.1.2021 - 31.12.2022

Budget 3.3 M€

E-fuel demonstration – Integration of 3 units

VTT

CarbonReUse or Kleener CO₂ capture

E-fuel demonstration – VTT Bioruukki piloting centre

MOBSU
ELECTROLYSIS
H2 COMPR.
GAS CONTAINER
CO2 SEPARATION
CO2 COMPR.
STEAM/FLUE GAS

VTT

Performance chemicals and transportation fuels from bio-CO₂ and hydrogen

VTT

Main objectives of the BECCU project

- Perform proof-of-concept for the integrated production of power & heat, specialty chemicals and transportation fuels based on utilization of CO₂ from bio-based operations and hydrogen from water electrolysis or industrial processes.
- Increase technical readiness levels (TRL) of the studied unit processes and develop the profitability of the concepts.
- Compare selected CO₂ utilization concepts (e.g. SNG, methanol) in contrast to CO₂ - based polyol products.

Create new business opportunities throughout the value chain.

Versatile polyurethanes in the spotlight

- Target chemical products in BECCU project are polyols, including polycarbonate and polyether polyols, being important raw materials for polyurethanes.
- Polyurethanes are used as either flexible or rigid foams (to be used in insulation materials, footwear, automotive parts etc.) and as adhesives (for such applications as woodworking glues and in abrasive papers).

Polyurethane can be used in various long lifetime applications such as insulation materials Figure: Finnfoam Polyurethanes are widely used in adhesives for such applications as woodworking glues Figure: Kiilto

The BECCU consortium

Parallel Business Finland company projects:

Other funding partner companies benefiting from the project:

Main finance from Business Finland as part of Green Electrification-ecosystem

VTT's budget: 2.04 MEUR (co-innovation in total 4.84 MEUR) Schedule: Jan/2020 – Aug/2022 BUSINESS FINLAND

Route for chemicals and polymers

- The process is based on the **production of olefins** through reverse water-gas shift (rWGS) and Fischer-Tropsch (FT) reaction steps.
- The olefins are further converted to epoxides through oxidation reactions by peroxides and epoxides are polymerized together with CO₂ to obtain polyols.
- The yield of C2-C4 olefins is maximized to be used in polyol production and higher hydrocarbons are utilized as energy carriers (waxes or fuels).

Enhanced carbon efficiency by the circulation of methane and unreacted gases in Fischer-Tropsch

CPOx: Catalytic partial oxidation

Polyols from mixed C2-C4 olefins

Polycarbonate polyol synthesis

- PO and BO copolymerization with CO₂
 - Heterogeneous and homogeneous catalysts applied
 - Varying Mw of the product by changing process conditions and starter polyol concentration
 - Application tests for polyurethane formulations starting

beyond the obvious

fuel

KEROGREEN Winter School, 10.-11.2.2022, online

Onni Linjala, Research Scientist (MSc), VTT Technical Research Centre of Finland

10.2.2022 VTT – beyond the obvious

BECC

CO₂ supply via carbon capture

We examine carbon capture from the emission streams of energy sector and industry to provide CO_2 supply for P2X. We focus on **post-combustion capture** and **inherent capture** over direct air capture due to better economics and higher technological maturity.

- Bioenergy (CHP, forest industry)
- Biorefineries (biogas, HVO, bioethanol)

- Forest industry: high potential for bio-CCUS
- Bio- and petroleum refineries: many high CO₂ concentration emission streams with potential for low CO₂ capture costs

Factors for carbon capture technology choice

Emission source characterization

 Capacity, biogenic vs. fossil, feed gas composition (CO₂ concentration, impurities), temperature, pressure

System integration

- Availability of energy streams: steam, low-grade heat, electricity, cooling
- Equipment size restrictions
- Emission and waste stream control, other utility needs

Desired capture properties

- CO₂ quality (determined by transportation and end-use application)
- Capture efficiency (harmful fossil-CO₂ vs. neutral bio-CO₂)

Literature review on post-combustion capture technologies

- Numerous technologies based on different phenomena are available and in development, e.g., liquid solvents, solid sorbents, membranes and fuel cell systems.
- No clear breakthrough technologies regarding performance, but amine-based solvents have a distinct lead in maturity.
- Commercial-scale operation is ongoing with amines mainly in fossil-CCS applications. Many demonstration/scale-up projects upcoming for other emerging technologies.
- Capture costs are decreasing as technologies advance. Currently, approaching a capture cost of 30 €/tCO₂ in postcombustion capture applications.

Capture cost in post combustion capture:

- All the reviewed technologies: 34–80 €/tCO₂
- On average: 40–60 €/tCO₂

Technology		Energy requirement per	Capture cost per CO ₂ tonne	
		CO ₂ tonne	Solid fuel	Gaseous fuel
Liquid absorbents	MEA	3.3–3.7 GJ ¹	44 € ²	64 € ²
	PZ+AMP	2.5 ² ; 3.2 GJ ³	34 € ²	56 € ²
	KS-1	2.6 GJ ⁴	\$59 ⁵	-
	KS-21	2.6 GJ ⁶	\$55 ⁵	-
	CANSOLV	2.3 7	-	-
Multi-phase	Aq. NH ₃	2.5 GJ ⁸	\$53 ⁸	-
absorbents	CAP	2.2 GJ ⁹	-	-
	UNO MK 3	2.0-2.5 GJ 10	\$45 11	-
	Hot-CAP	1.8 GJ ¹²	-	-
	DMX	<2.5 GJ ¹³	39 € ²	-
Water-lean	eCO2Sol	2.3 GJ ¹⁴	\$47 ¹⁵	-
solvents		2.0 GJ (exp.) 14		
Solid adsorbents	PSA	>2.3 GJ ²	\$40 ¹⁶	-
	VSA	1.7 GJ ¹⁷	-	-
	VeloxoTherm	1.5 GJ ¹⁸	41 € ²	-
Membranes	MTR Polaris	1.0 GJ ¹⁹	47 € ²	80 € ²
			\$30 (exp.) 20	
Hybrid systems	Membrane-sorbent	-	\$36 ²	-
Electrochemical	NGCC-MCFC	-	-	34 € 21
separation	hybrid-cycle			
Ref: 1) GCCSI in Svend Tanaka et al. 2018; 7) S Lu et al. 2014; 13) Brou	sen 2014; 2) IEAGHG 2019 ingh & Stéphenne 2014; 8) intin et al. 2017; 14) Zhou et	Da; 3) Rabensteiner et al. 2016; 4) Yag Li et al. 2016; 9) Augustsson et al. 20 al. 2018; 15) Lail 2016; 16) Ritter e	gi et al. in IEAGHG 20 017; 10) Smith et al. 20 t al. 2015; 17) Krishna	19a; 5) Carroll 201 14; 11) UNO 2014 murthy et al. 2014

Available: Review on post-combustion carbon capture technologies and capture of biogenic CO₂ using pilot-scale equipment

Carbon capture tested at TRL 5–6 in BECCU

- Three novel post-combustion capture technologies were tested with synthetic gas mixtures, flue gases from biomass combustion (50 kW CFBpilot), and biogas at Jyväskylä, Finland in September of 2020.
- Objective of the test runs was to verify proper function of the technologies in realistic conditions and to gather data on the effect of different operating conditions on the performance of the capture technologies. The test results are also utilized in process modeling.

Three novel Finnish technologies tested in BECCU

	CarbonReUse	VTT	
Technology	Enhanced water scrubbing	Enhanced soda scrubbing	Kleener-liquid
Capture phenomenon	Physical absorption	Chemical absorption	Chemical absorption
Capture solvent	Water (no chemicals)	Aqueuos sodium carbonate solvent (Na ₂ CO ₃)	A novel ash-based capture solvent
Absorber equipment	Bubble-type absorption column	VTT's novel micro-bubble generator	VTT's equipment used in BECCU tests
Absorption conditions	5 °C 4–5 bar	30–40 °C atm	50–65 °C atm
Regeneration conditions	Pressure flash ~0.4 bar	60–80 °C Vacuum 0.2–0.5 bar	60–80 °C Vacuum 0.2–0.5 bar
Required energy supply	Electricity	Low-grade heat for regeneration Electricity for auxiliaries	Low-grade heat for regeneration Electricity for auxiliaries

Promising results achieved at small pilot-scale

Purity of the captured CO₂ [mean vol-% in dry gas]

	CarbonReUse	Kleener*	VTT Soda
Synthetic gas 15 vol-% CO ₂	95.1	-	96.7
Synthetic gas 30 vol-% CO ₂	98.3	-	-
Pine chips (flue gas)	97.1	94.2	95.9
Washed straw (flue gas)	96.0	-	96.6
Spruce bark (flue gas)	-	-	96.5
Raw biogas	-	-	93.6

Capture efficiency [%]

	CarbonReUse	Kleener*	VTT Soda
Synthetic gas 15 vol-% CO ₂	74	-	83–86
Synthetic gas 30 vol-% CO ₂	86	-	-
Pine chips (flue gas)	72–76	69–71	74–79
Washed straw (flue gas)	64–70	-	78–83
Spruce bark (flue gas)	-	-	88-90
Raw biogas	-	-	97–98

*A diluted version of the Kleener-liquid (25 wt-%. solution vs. the "normal" 50 wt-% solution) was tested in the BECCU test runs. Higher capture performance can be expected with the normal formula.

Conclusions and next steps

CONCLUSIONS

A literature review was conducted to map carbon capture technology options and to evaluate technoeconomic performance of the technologies.

Three novel capture technologies were proven functional in post-combustion carbon capture at realistic conditions at TRL 5-6.

Performance of the tested technologies are promising and in align with other carbon capture technologies at similar scale. Further work is required to evaluate economics of the capture processes at industrial-scale.

NEXT STEPS

- Process modelling and TEA for carbon capture.
- Carbon capture potential of forest industry and refinery processes are evaluated, and suitable capture technology options for these industries are assessed.
- As part of E-Fuel, carbon capture will be tested at a relevant industrial environment, with integration to SOEC high-temperature co-electrolysis and mobile FT synthesis unit for in-situ production of FT fuels.
- VTT's enhaced soda scrubbing technology is further developed by enhancing mass transfer and energy efficiency. Also, scale-up options are assessed.

beyond the obvious

Onni Linjala onni.linjala@vtt.fi +358 503 553 861 @VTTFinland

www.vtt.fi

VTT

Techno-economics of the synthesis route from CO₂ and clean H₂ to polycarbonate polyols

Miia Nevander KEROGREEN Winter School 10.2.2022

10/02/2022 VTT – beyond the obvious

Agenda

Process route to polyols & background

10/02/2022 VTT – beyond the obvious
Polycarbonate polyols – high value chemicals and plastics

Term	Definition	Structural formula
		Low Mw polyols (thermosets)
Polycarbonate polyol	Low molecular weight polymer, linear aliphatic polycarbonate, derived from the copolymerization of carbon dioxide and an epoxide, containing two or more terminal hydroxyl groups (Qin & Wang, 2019)	PO + CO ₂ + Catalyst + Initiator HO + CO ₂ + Catalyst + Initiator HO + OH HO + OH HO + OH HO + OH HO + CO ₂ + Catalyst + Initiator

- High value product, selling price can be even 6 000 €/tonne
- Applications: polyurethanes, coatings, adhesives, ...

BECCU-polyols from biogenic CO₂ & green H₂

- The process is based on the **production of olefins** through reverse water-gas shift (rWGS) and Fischer-Tropsch (FT) reaction steps
- The olefins are further converted to epoxides through oxidation reactions by peroxides and epoxides are polymerized together with CO₂ to obtain polyols
- The yield of C₂-C₄ olefins is maximized to be used in polyol production

Carbon dioxide & hydrogen as starting materials

- CO₂ from biogenic sources with MEA
 - 50 €/tonne capture & processing cost assumed
- H₂ from alkaline electrolysis (AEC)
 - 100 MW electrolyser (η=67%)
 - 60 M€ electrolyser & costs of water and electricity

Results from preliminary TEA of BECCU-polyols

10/02/2022 VTT – beyond the obvious

Assumptions & results

Inputs	Price	Outputs	Price
Electricity (total)	45 €/MWh	Cyclic carbonates	900 €/t
Hydrogen peroxide	550 €/t	By-product heat	20 €/MWh
CO ₂ supply	50 €/t	By-product oxygen	40 €/t

Other parameters	
Electrolyser electricity input	100 MW _e
Annual plant operation time	8 000 h
Total investment cost estimate (20 years and 8% WACC for annuity)	124 M€

Production cost estimation with preliminary assumptions Increase Decrease Total The selling price can be up to 6000 €/tonne 3000 2500 [⊃]roduction cost (€/t_{product}) 2 177 € 334 € 1 980 € 2000 - 90 € - 55 € 10€ 14€ - 53€ 41€ 89€ 94€ 131€ 133€ 1500 375€ Let's double the investment 956€ 1000 costs and see the effect 500 0 Poor cost with by coorders Electricity to H2 Hydrogen Deroxide Investment amuity Production cost arbon dioxide Fited Operating Costs Other electricity 1.4.butanediol Main, & waste man, Consumables Hear from electrolyses. Cyclic Carbonales Catalysts Otroen

Production cost estimation with preliminary assumptions

The production costs are heavily dependent on the price of electricity

Effect of ±30% change in each variable to production cost

10/02/2022

Updated process simulation with Aspen Plus

10/02/2022 VTT – beyond the obvious

Simulation model improved since the preliminary TEA results

- Raw material in epoxidation, ethene, is difficult to separate from other light substances when there is CO₂ in the feed
 - CO₂ freezes in temperatures needed for cryogenic separation
 - We assume a separation method for CO₂ and are able to retrieve ethene to epoxidation
- Recycle loop added for epoxidation solvent (methanol)
 - Energy consumption of separations optimized
- Experimentally discovered side products have been added to the model
- Reactor performances have been revised and updated

BECCU process flowsheet

VTT

Suggested improvements & conclusions

VTI

10/02/2022 VTT – beyond the obvious

Room for improvements after BECCU project

Separation of CO₂ after Fischer-Tropsch (FT)

- FT catalyst is both rWGS and WGS active, so there should be some CO₂ in the feed to FT
- Further investigation needed to find the most suitable separation method

Separation of side products of epoxidation

• Side products form azeotropes with methanol, water and other components, so the separation seems challenging

Epoxidation solvent (methanol) and product (1-butene oxide) have boiling points very close to each other, and they form azeotropes

- Difficult to separate
- Liquid-liquid extraction process should be further investigated

The modelling of polycarbonate polyols

- Polymer modelling requires thermodynamic data
- The products are not added to Aspen model

Conclusions

- BECCU production route seems competitive & profitable
 - Production cost was found lower than the expected selling price
- Sensitivity analysis showed that the process is most sensitive to changes in electricity price
 - TCI and H₂O₂ price have the second and third greatest effect

 \blacktriangleright An improved TEA is in the making, with the updated process model and experimental findings

VTT – beyond the obvious 10/02/2022

beyond the obvious

Miia Nevander Miia.Nevander@vtt.fi @VTTFinland

www.vtt.fi https://www.beccu.fi/

10/02/2022

Questions & Discussion

VTT

VTT – beyond the obvious

KEROGREEN Winter School "Future directions in research on Power-to-X for sustainable chemicals & fuels", 10-11.02.2022, online

Process intensification for advancing Power-to-Fuels

Esperanza Ruiz*, José María Sánchez

*Esperanza Ruiz Martínez

esperanza.ruiz@ciemat.es

Unit for Sustainable Thermochemical Valorisation Web: <u>http://rdgroups.ciemat.es/web/valer</u>

Energy Department CIEMAT

¿Why Power-to-Fuels?

Advantages of e-fuels

- \blacktriangleright \uparrow Reduction of CO₂ emissions vs. conventional fossil fuels
- \succ \uparrow Ease of storage vs. electricity & H₂
- Infrastructures for storage, transport and use (energy generation or mobility) fully developed.

Power-to-Fuels (e-fuels) deployment bottlenecks

- Energy efficiency in fuel production (losses associated with conversion steps)
- Level of development (Demo) of the technology (few commercial plants or in TRLs)
- CAPEX (electrolyzers)
- \succ \uparrow Production costs vs. conventional fossil fuels

Power-to-Fuels: CO₂ capture and conversion

 $(2x-z+y) H_2 + x CO_2 \leftrightarrow (2x-z) H_2O + C_x H_yO_z$

CO₂ capture and hydrogenation: Process Intensification

Challengues: Increase energy efficiency (ne) and decrease CAPEX & OPEX

≻↑ Efficiency, selectivity & tolerance poisons $\rightarrow \downarrow P \& T \Rightarrow \uparrow \eta e$

 $\rightarrow \downarrow V_{reactor} \Rightarrow \downarrow CAPEX$ > \uparrow Lifetime $\Rightarrow \downarrow$ Deactivation (C, H₂O+ \uparrow T) or regeneration $\Rightarrow \downarrow OPEX$

 \succ Reactor design optimization: T control/heat integration ⇒↓CAPEX & ↑ηe

Process intensification: Combination of CO_2 capture and/or catalytic hydrogenation of CO_2 with other processes or operations in a single, more efficient and compact reaction system:

- Alternative reaction heating (microwave, solar)
- Selective activation (photoelectro/photo/electro-catalysis, plasma)
- Reactor design (reaction-heat exchange, reaction-separation)
- Cyclic operation (reaction/adsorption-desorption)

Alternative ways of reaction heating

T active centers > T bulk catalyst

Microwave energy

Selective activation

Reactor design optimization: Heat integration

Reactor design optimization: in-situ separation

Cyclic operation (reaction-adsorption)

Multifunctional catalysts

Multicatalytic materials combining active phases for different step reactions (e.g. RWGS/CO-Fischer Tropsch/hydroisomerization)

Indirect Fischer-Tropsch synthesis: RWGS + CO-FT (TRL 9 – commercial)

 $H_2 + CO_2 \rightarrow CO + H_2O$ (Reverse Water Gas sifth- RWGS)

 $(2n + 1) H_2 + n CO \rightarrow C_n H_{2n+2} + n H_2O$ (Fischer Trospch- FT)

CIEMAT Research: Electrochemical selective activation

- Selective catalyst activation by combination of CO₂ hydrogenation at atmospheric pressure with electrochemical promotion of the catalyst in single-chamber SOEC to enhance activity and selectivity.
- Selective catalyst activation by combining CO_2 hydrogenation at atmospheric pressure with H_2O electrolysis for in-situ production of H_2 in double chamber SOEC (Coelectrolysis)

Electropromoted CO_2 capture by selective activation of adsorbent, using a small ΔV (ESA) instead of more energy intensive $\Delta T/\Delta P$ (TSA/PSA) in single chamber SOECs

CIEMAT Research: Electrochemical selective activation

- Flow rate: up to 20 Nm³/h
- Temperature: up to 900 ° C
- **Pressure: atmospheric**

GAS ANALYSIS SYSTEM

Micro-GC

TCD-H₂

Electrochemically enhanced CO₂ hydrogenation

- ✓ Maximize CH_4 yield: CO_2 conversion (XCO_2) & selectivity (S_{CH4}) & in-situ regeneration
- ✓ Minimize energy input: maximize faradaic efficiency (η_c) & minimize energy cost (C_E)

Single chamber reactor (electrochemical promotion)

Electrochemically mediated CO₂ capture

CIEMAT Research: Cyclic operation (reaction-adsorption)

- Sorption enhanced catalytic CO₂ hydrogenation, by combining an active catalyst and a water selective adsorbent, to shift the equilibrium conversion via in situ water removal.
- CO₂ capture and hydrogenation by reactive adsorption, using dual function materials (CO₂ sorbent & hydrogenation catalyst) by coupling endothermic CO₂ desorption step with exothermic CO₂ hydrogenation step in a single isothermal reactor at atmospheric pressure

CIEMAT Research: Cyclic operation (reaction-adsorption)

electrolyzer

Sorption enhanced

Dual function materials

Reactive adsorption

CIEMAT Research: Cyclic operation (reaction-adsorption)

- ✓ Maximize CH₃OH/CH₄ yield: CO₂ conversion (XCO₂) & selectivity (S_{CH4})
- ✓ Minimize energy input: Heat integration ΔQ reaction (exothermal) ↔ ΔQ regeneration (endothermal)

Thank you for your attention!
VTT

High temperature electrolysis and co-electrolysis for production of green hydrogen and syngas

Ville Saarinen VTT fuel cells and hydrogen

11.2.2022

VTT – beyond the obvious

VTT

VTT Fuel cells & Hydrogen

- 20 years of active history in PEMFC, SOFC, and electrolysis
- ~50 person involved in H₂ related activities at VTT
- Mainly working with European and Finnish companies in EU-projects and contract research, currently coordinating 7 EU-projects and participating in 17 projects
- All activities are supported by validated modeling tools (CFD, thermal, mechanical, etc.) from single components to complete systems
- Excellent know-how, research facilities, wide international partner network and long experience on high temperature electrolysis and fuel cells
- Product development for Industrial partners: sales and licensing IPR for Finnish and European companies

https://www.vttresearch.com/en/ourservices/fuel-cellsand-hydrogen

System analysis, TEA, LCA, fuel markets & business development

Motivations to develop electrolyser technology

- According to Hydrogen Europe, an additional 20-40 GW of renewable generation can be accommodated by 2030 as a result of hydrogen production by electrolysis (i.e. power-to-gas), resulting in the transfer of 70-140 TWh of Europe's renewable energy to other sectors.
- Efficiency improvements in production process (OPEX) in the coming future can be estimated maximum in around 10%. Electricity is the main cost component affecting the price of hydrogen.
- The size of water electrolyser market measure in power is around 100 MW. This will grow into 1000 – 10 000 fold in coming years. It is inevitable that remarkable reductions in production costs of equipment (CAPEX) will be achieved.

VTT

Electrolyser Technologies

	ALKALINE	PROTON EXCHANGE MEMBRANE (PEM)	SOLID OXIDE (SOE)
	Low capital cost Mature technology	Fast start-up Commercial technology Smaller footprint	High electrical efficiency Co-electrolysis (H ₂ O & CO ₂) Reversible operation
	Limited operation flexibility High operational cost	High capital cost, if high efficiency targeted	R&D pre-commercialized
System scale	Up to 100 MW	Up to tens of MW	Up to 1 MW
System cost excl.	Public: 1000-1200 €/kW* 2018 offers: 700 €/kW**	1900-2300 €/kW* 2018 offers: 800-900 €/kW**	target <2000 €/kW by 2020 (now: 4000 €/kW, mass production 1500 €/kW
Electrical efficiency	75% (HHV), 63 % (LHV)**	68% (HHV), 58 % (LHV)**	80-90%
	AND THE OWNER OF THE	-	

*Development of water electrolysis in the EU, 2014: ** 20 MW size (2018 offers). Capital cost depends on efficiency

Incl. power supply, system control, gas drying (purity above 99.4%). Excl. grid connection, external compression, external purification and hydrogen storage, building

Solid oxide electrolyser (SOEC) operation principle

0,

Steam electrolysis

$$H_2 O \rightarrow H_2 + \frac{1}{2}O_2$$
 $\Delta H \approx 250 \text{ kJ/mol}$

Co-electrolysis

H₂O, CO₂

 $H_2O + CO_2 \rightarrow H_2 + CO + O_2 \quad \Delta H \approx 525 \text{ kJ/mol}$

Simplified figure of SOEC cell structure

VTT

Solid oxide technology

- High operation temperature: 600-850 °C
- SOE technology offer the potential for highest electrical efficiency in electrolysis mode (80-90%) compared to other electrolyser technologies
- SOEC technology is reversible: the same system can work both as a fuel cell and an electrolyser depending on power generation and grid stabilisation needs
- SOEC has capability also for co-electrolysis of steam and CO₂, which enables more efficient power-to-X, if integrating SOEC as part of industrial processes
- The most commercial electrolysers are nowadays alkaline, but process has low efficiency due to needed high operation voltage.
 PEM based technology is more expensive than alkaline and it has also its own limiting factors like availability of iridium catalyst

Electrolyser technology readiness

8

Source: Columbia SIPA

hydrogen in a circular

limits ; IEA (Oct 2021)*:

(Aug 2021): Green

carbon economy:

Opportunities and

Global Hydrogen

Review 2021

Efficiency can be improved without tradeoff

- Efficiency can be increased by
 - electrolyte and separator development (thinner, higher conductivity, better durability)
 - catalyst development (higher activity, better durability)
 - Reactant and product transport improvement (flow field, transport layer)
- Continuous field of development
- No theoretical limitation on efficiency (except energy balance)

Summary of efficiency and operational range of AE, PEME and SOE cells or stacks. (Buttler & Spliethoff, 2018).

Benefit of high temperature electrolysis originates from thermodynamics

 $H_2O = H_2 + 1/2 O_2$

- Lower activation losses at lower current densities at high temperatures (700-800 °C) lead to lower power consumption during hydrogen production
- No need for noble metal catalysts
- Solid oxide cells and stacks can be made with low cost raw materials (suitable for mass manufacturing)

High temperature electrolyser operation

Co-electrolysis of CO₂ and steam

- Solid Oxide electrolysis can perform CO₂ and steam co-electrolysis and produce syngas (CO + H₂)
- The technology is essentially the same as for pure hydrogen production
- Thermal integration between electrolysis and downstream synthesis steps highly beneficial
- Benefits of co-electrolysis compared to electrolyser and reverse water gas shift reactor:
 - Simpler layout
 - rWGS needs high temperature (>>600°C), difficult to couple with lowtemperature electrolyser
- Drawbacks:
 - CO₂ need to be highly pure for co-electrolysis
 - Risk of carbon deposition

Designing aspects for reversible solid oxide pilot system

- Developing, testing and learning about new technology
- Modelling and finding system boundaries for optimized system
- End users main points of interest for a rSOC system:
 - 1. Efficiency
 - 2. Operation window
 - 3. Lifetime of the system
 - 4. Price

rSOC pilot system «RESSU»

- Highly instrumented **Reversible SOC System Unit** "**RESSU**" designed and build by VTT
- High efficiency and suitable for integration with various energy sources and P2X, adaptability to local energy needs (supports grid stabilisation with high penetration of renewable electricity)
- Good technology base for green, flexible and efficient energy systems

Slice: Temperature (degC)

VTT

Measured system level efficiency

 $\eta_{AC \ to \ H_2}(HHV \ or \ LHV) = \frac{HHV \ or \ LHV \ of \ produced \ H_2}{Total \ AC \ power \ input}$

- where Total AC power input = AC power input for electrolysis + AC power input for heaters + AC power input for evaporator
- The AC power input for electrolysis includes all AC power consumed by the power supply. This term also takes into account the voltage losses outside the stack, the power consumption of the power source, and the AC/DC conversion efficiency

rSOC system level	AC power for steam production included	Free 150 °C steam flow assumed
AC to H ₂ efficiency (HHV)	71 %	81 %
AC to H ₂ efficiency (LHV)	60 %	69 %

Saarinen, V., Pennanen, J., Kotisaari, M., Thomann, O., Himanen, O., Iorio, S. D., Hanoux, P., Aicart, J., Couturier, K., Sun, X., Chen, M., & Sudireddy, B. R. (2021). Design, manufacturing, and operation of movable 2 × 10 kW size rSOC system. Fuel Cells, 21(5), 477-487. https://doi.org/10.1002/fuce.20210002

Outlet molar fractions and H_2/CO ratio as a function of inlet CO_2 molar fraction (i=0.2 A/cm²)

Summary

- High temperature electrolysis (SOEC) can produce hydrogen or syngas with high efficiency (80-90%) and utilise waste heat, which enables more efficient power-to-X, if integrating SOEC as part of industrial processes
- SOEC technology is reversible: the same system can work both as a fuel cell and an electrolyser depending on power generation and grid stabilisation needs
- Movable "10-foot container" size Reversible Solid Oxide Cell (rSOC) system has been designed and developed in pilot demonstration scale at VTT
- Wide range of operation parameters were tested to achieve eligible outlet gas composition (H₂ / CO = 2) suitable for upstream FT-synthesis

Thank you for your attention. Any questions?

D.Sc (Tech.) Ville Saarinen

ville.saarinen@vtt.fi

+358 40 620 2933

LUT University

LAND OFTEE CURIOUS

KEROGREEN WINTER SCHOOL, 10-11.2.2022

"DYNAMIC ENERGY AND MASS BALANCE MODEL FOR AN INDUSTRIAL ALKALINE WATER ELECTROLYZER PLANT PROCESS."

Sakas, G., Ibáñez-Rioja, A., Ruuskanen, V., Kosonen, A., Ahola, J. and Bergmann, O., 2022. Dynamic energy and mass balance model for an industrial alkaline water electrolyzer plant process. *International Journal of Hydrogen Energy*, 47(7), pp.4328-4345.

Presenter: Georgios Sakas, Junior Researcher, LUT University

HIGHLIGHTS OF THE ARTICLE

1. Large-scale simulation of a 3 MW, 16 bar industrial alkaline water electrolyzer was developed in MATLAB Simulink.

- 2. Mass and energy balances were verified and adjusted with measurements from an operating plant of similar size and type.
- 3. Steady-state analysis showed Faraday efficiency of 86%.
- 4.96% of the generated heat was extracted from the heat exchangers.
- 5. Contribution of each Faraday loss parameter was approximated for a steady-state case.

>> Simulation/Model objectives:

- 1. Determine the important peripheral components.
 - Most potential for improvements
- 2. Optimize the performance of each component individually.
 - Energy loss.

PID DIAGRAM – THEORY

- Various real industrial cases were investigated.
- Blueprint.
- System to be simulated.

ELECTROLYZER STACK DESIGN (BIPOLAR CONFIGURATION)

- \rightarrow $A_{\rm cell} = 2.66 \, m^2$
- $N_{\rm c} = 326$
- $\gg N_{\rm c,series} = 163$
- >>> Two half stacks connected in parallel.

Table 1 – Engineering design of each modelled electrolyzer cell.

Variable	Material	ρ	C _p	Length
		$[\text{kg m}^{-3}]$	$[kJ kg^{-1} C^{-1}]$	[mm]
Electrolyte space	$\mathrm{KOH} + \mathrm{H_2O}$	1280	4.07	4.75
Diaphragm	Zirfon™	1	3.00	0.50
Bipolar plate	Steel	8000	0.42	6.50
Coating	Ni-Co	8900	0.45-0.42	a/a

SIMULINK DIAGRAM

Current investigation: How can we re-dimension and run the plant to reduce the H_2 cost? (based on minimum SEC).

- Matlab function Simulink block for each unit operation.
- Signal flow:
 - Output from one unit operation.
 - Input to the next one.
- Vector Signals:
 - Mass flow
 - Temperature
 - Density
 - Pressure
 - Voidage
- Main model parameter:
 - DC Current supplied to the stack per second.

RESULT (1): ELECTROCHEMICAL MODEL; POLARIZATION CURVE, FARADAY EFFICIENCY.

The model behavior matched the plant at 86% Faraday efficiency, i.e., 14% of the current efficiency is lost to side reactions.

Curve fitting with measurements taken from the industrial 3MW stack.

RESULT (2) THERMAL MODEL; SHUNT CURRENTS

- Verification of energy balance:
 - Same behavior of temperature phenomena.
 - Very small differences in time variation.
- Dissipated heat due to shunt currents:
 - Thermal model converged at 308 kW of shunt currents power loss.
 - 11.2% of the estimated 14% Faraday loss.
 - Common issue in bipolar configurations.
- Reliable steady-state results.

RESULT (3): STEADY-STATE ANALYSIS; POWER CONSUMPTION.

P2X

ENABLE

- From the total power input: 20.3% Overpotentials + 11.2% Shunt currents
 - Heat generated:
 - 97.4% removed from heat exchangers.
 - 2.6% from stack to
- 68.5% of the total power input is converted to hydrogen:
 - 2.5% of the produced hydrogen is lost as impurities in the opposite cell: diaphragm diffusion + gas dissolution in the circulation.
 - 0.4% of the produced hydrogen is burned in DeOxidizer to remove the oxygen impurities.
 - 97.1% of produced hydrogen is the final product.

Thank you! Questions?

Cerpolech

Production of Sustainable aircraft grade Kerosene from water and air powered by Renewable Electricity, through the splitting of CO₂, syngas formation and Fischer-Tropsch synthesis

Syngas Production in the Kerogreen Process Chain:

Development of a compact Sorption-Enhanced Water-Gas Shift Reactor

T.J. Stadler, P. Pfeifer Karlsruhe Institute of Technology

Kerogreen Winter School, 10.-11.02.2022, virtual event

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under GA-Nr. 763909

HYGEAR

INERATEC

Approach: Sorption-enhanced water-gas shift reaction (SEWGS)

 $CO + H_2O \rightleftharpoons CO_2 + H_2$ $\Delta H_R^0 = -41.1 \text{ kJ/mol}$

- $H_2:CO \sim 2$ for subsequent F-T synthesis
- CO₂ removal for recycle to plasmolysis unit
- Fixed-bed reactor system
 - CO₂ sorbent
 - WGS catalyst
- Cyclic operation
 - CO₂ adsorption during WGS
 - Sorbent regeneration with steam and N₂

■ Time and space dependent process → simulation-driven design and development

Winter School, 10.-11.02.2022, T.J. Stadler: Development of a compact SEWGS Reactor

Lab-Scale: Choice of Materials

- Catalyst
 - Low-temperature WGS catalyst (200 300 °C)
 - Commercial Cu/ZnO-Al₂O₃ pellets
- Sorbent
 - Potassium-impregnated hydrotalcite
 - Chemisorption isotherms @250 °C:

Lab-Scale: Choice of Process Conditions

[Stadler, T. (2021). Sorption-Enhanced Water-Gas Shift Reaction for Synthesis Gas Production from Pure CO. Energies 14 (2), 355. doi:10.3390/en14020355.]

Winter School, 10.-11.02.2022, T.J. Stadler: Development of a compact SEWGS Reactor

Adsorption parameters

Desorption parameters

Reactor configuration

Scale-Up: Pilot Plant Reactor Design

SEWGS reactor

- Compact layout (290x310x190 mm)
- One diffusion-bonded apparatus
- Gas flow
 - Six individually fed reaction chambers
 - Each consists of seven slits
 - Slits filled with sorbent and catalyst
- Temperature control
 - Heating Cartridges
 - Adjacent channels between the slits for T control

Scale-Up: SEWGS Module Integration

- SEWGS module in container-sized pilot plant
- Simulation-driven plant operation concepts

Process Simulation: Model Development

- Time and space (z-direction) resolved
- Rectangular channel filled with sorbent and catalyst
 - Isothermal system:
 - Isobaric system:
 - No dispersion in x,y-direction:
 - Mass transport limitations
 - External (Maers):
 - Intraparticle (Weisz-Prater):

- reactor design Δp negligible $d_{bed}/d_{particle} > 10$
- negligible not negligible

- Heterogeneous reactor model
 - WGS reaction kinetics [1]
 - Adsorption kinetics of CO₂ and H₂O on 3 sorption sites [2]
 - Desorption kinetics based on equilibrium

[1] Choi, Y. (2003). Water gas shift reaction kinetics and reactor modeling for fuel cell grade hydrogen. J. Power Sources 124 (2), 432-439. doi:10.1016/S0378-7753(03)00614-1. [2] Coenen, K (2019). Kinetic model for adsorption and desorption of H₂O and CO₂ on hydrotalcite-based adsorbents. Chem. Eng. J. 355, 520-531. doi:10.1016/j.cej.2018.08.175.

Karlsruhe Institute of Technology

Process Simulation: Hierarchical Reactor Model

Process Simulation: Cyclic Operation

- Continuous CO₂-free H₂ production
- Increased sorbent usage (15 %) due to interconnected chambers
- Automatically adjusted switching times

[Stadler, T. (2022). Numerical Simulation Approach for a Periodically Operated Sorption-Enhanced Water-Gas Shift Reactor. Submitted.]

Time (s)

Winter School, 10.-11.02.2022, T.J. Stadler: Development of a compact SEWGS Reactor

Cycle (-)

Influence of SEWGS performance on FT-HC step

Winter School, 10.-11.02.2022, T.J. Stadler: Development of a compact SEWGS Reactor

Fischer-Tropsch Synthesis (FT)

- Alkanes: $n \text{ CO} + (2n + 1) \text{ H}_2 \rightarrow \text{C}_n \text{H}_{2n+2} + n \text{ H}_2 \text{O} \quad \Delta H_R < 0$
- Alkenes: $n \operatorname{CO} + (2n) \operatorname{H}_2 \rightarrow \operatorname{C}_n \operatorname{H}_{2n} + n \operatorname{H}_2 \operatorname{O}$
- Alcohols, other oxygenates, …
- Micro-structured reactor
- Co-based catalyst

Hydrocracking (HC)

- Cracking: $C_n H_{2n+2} \rightarrow C_{n-m} H_{2(n-m)} + C_m H_{2m+2}$ $\Delta H_R > 0$
- (De)hydrogenation: $C_{n-m}H_{2(n-m)} + H_2 \rightleftharpoons C_{n-m}H_{2(n-m)+2}$ $\Delta H_R > 0$
- Reactor cascade
- Bifunctional Pt-ZSM5 catalyst

Influence of SEWGS performance on FT-HC step

Synthesis gas (FT feed): no CO₂ separation, partly CO₂ separation in SEWGS

- Net production of hydrocarbons in HC is strictly limited to C₁₄
- CO₂ acts as diluent with regard to reaction on the HC catalyst
- Diluting effect of CO₂ has to be considered

[Stadler, T. (2022). Influence of CO₂-Rich Syngas on the Selectivity to C₁₀-C₁₄ in a Coupled Fischer-Tropsch/Hydrocracking Process. Chem. Ing. Tech. 94 (3). doi:10.1002/cite.202100172

Conclusions and Outlook

Winter School, 10.-11.02.2022, T.J. Stadler: Development of a compact SEWGS Reactor

Tabea J. Stadler ⊠ tabea.stadler@kit.edu

Karlsruhe Institute of Technology (KIT) Institute for Micro Process Engineering (IMVT)

Thank you for your attention

E-FUEL Co-electrolysis with FT Techno-economic assessment

Winter school 10.02.2022

Marjut Suomalainen, Miia Nevander, Markus Hurskainen 10/02/2022 VTT - beyond the obvious

Efuel production via co-electrolysis and FT

- Production cost estimate for target products diesel /jet fuel
- Target in large scale operation around 2030

- By-product gasoline
- Flue gas input 315 t/h
 - source power plants or process heat generation (CO₂ content 20 wt%)
 - capture method amine-based absorption (monoethanolamine, MEA)

Main technical parameters

- Steady-state modelling using Aspen Plus simulation software
- CO₂ absorption by MEA
 - Stream to co-electrolysis 63 t/h of which
 - CO₂ 99 wt%
 - H₂O 1 wt%
 - Minor amount of N_2 and O_2
- Co-electrolysis
 - Od model of cross flow electrolyser, operation temperature 700 °C
 - Faradic loss 1%, heat loss 2%, area specific resistance (ASR) 0.5 ohm*cm²
 - AC/DC efficiency 90%
 - Electrical efficiency 90% for heating gases from 650 to 700 °C
 - Hydrogen input 5 mol% of total CO₂, H₂O, and H₂ input
 - Current density (i) 0.8 A/cm2

- FT reactor (Co catalyst):
 - stoichiometric reactions for formation of alkanes up to C₃₀ and alkenes up to C₂₀
 - Alpha for product distribution 0.93
 - Ratio H₂/CO =2.0
 - Once through CO conversion 0.75
 - Gas recycling rate 60%
- Refining section
 - Modelling based on real components
 - Lumping and simplifying hydrocracking reactions
 - H₂ consumption calculated
 - Currently no detailed modelling for catalytic reformer and isomerisation
 - H₂ consumption estimated based on literature
- PSA for hydrogen production
 - H2 recovery 92%
 - Vacuum 0.1 bar

Mass balance and performance

- Production
 - Diesel 7.5 t/a
 - Gasoline 6.0 t/h
- Co-SOEC
 - Reactant utilisation 84%
 - Vcell 1.35 V
 - Electrical efficiency to syngas 85% (LHV)

- Electricity consumption 310 MW
 - Electricity to liquid fuels 48%
- Heat integration
 - No additional heat required
 - District heating potential 55 MW (120-70 C) based on pinch analysis, applying heat pump for low grade heat

Electricity demand

- Electricity demand 310 MW
- SOEC electrical efficiency to syngas 85% LHV
- Electricity to liquid fuels 48%

Preliminary CAPEX estimate

- Plant capacity
 - SOEC 290 MW
 - CO₂ in 63 t/h
 - Liquid fuels 100 000 t/a
- Total CAPEX 550 M€
 - Of which SOEC 230 M€ (based on 800 €/kWe)

Assumptions related to operation costs, product prices and financial parameters

- Annual operation 8322 h/a
 (95%)
- Investment subsidy not considered
- Insurance not included

SCENARIO	BASELINE	RANGE
BY-PRODUCT PRICES		
Purge gas	0 €/MWh	
Heat	20 €/MWh	
COSTS		
Electricity prices (incl. Transmission and taxes)	35 €/MWh	20 - 50 €/MWh
Water	0.2 €/m³	
Waste water	1.7 €/m³	
Annual maintenance cost	2 % of the investment	
Labour cost per person for employer	60 000 €/a per person	
Labour (5 shifts)	5 person/shift	
FINANCIAL PARAMETERS		
Rate of return	8 %	
Economic lifetime of the plant	20 a	

Preliminary production cost estimation

- Production cost estimate of liquid fuels assuming electricity price 35 €/MWh
 1300-1400 €/t when SOEC CAPEX is 600-1000 €/kW
- Investment and electricity price are the most significant economic cost factors
- Assumptions related to SOEC have strong effect to the economics

10/02/2022

VTT – beyond the obvious

Preliminary sensitivity of production cost to electricity price

- Production cost of liquid fuels ranges from 1000-1700 €/t depending when electricity price range is from 20-50 €/MWh
- Electricity price has stronger effect than the SOEC price in the range of 600-1000 €/kW

Summary

- Electricity price and CAPEX estimate are the most significant cost factors
 - Assumptions related to SOEC have strong effect to the economics

Production cost of liquid fuels ranges from 1000-1700 €/t depending when electricity price range is from 20-50 €/MWh

Uncertainties and limitations of the technoeconomic assessment

- CAPEX estimate has high uncertainty
- SOEC lifetime assumed 20 years
- Continuous operation on renewble electricity
- Average revenue for heat assumed year around
- Catalyst costs not taken into account
- Refinery section model a simplified solution

beyond the obvious

Marjut Suomalainen marjut.suomalainen@vtt.fi

@VTTFinland

www.vtt.fi

Synergistic combination of plasma activation and electrocatalysis for nitrogen fixation by water

R. Sharma, S. Welzel, M.C.M. van de Sanden, <u>M.N. Tsampas</u>, Group leader

10-11 Feb 2022, Future directions in research on Power-to-X for sustainable chemicals & fuels

Group research in a nutshell ...

DIFFER Solar fuels research focusses on novel materials, processes and

CO₂-neutral fuels and chemicals

- Seasonal and regional energy storage
- Sustainable feedstock for green industry

Activation of base molecules

- Electrocatalysis (H₂O, CO₂)
- Plasma catalysis (N₂, CO₂)

We employ various types of **electrochemical membrane reactors** that allow us to couple **renewable energy-driven processes** to a wide range of applications e.g. water electrolysis, electro-fixation of nitrogen and carbon dioxide.

The relevance of nitrogen fixation

- Main application: Fertilizers
- Industrial process: large-scale, energy-intensive
 - **CO₂ emissions:** 1% of worldwide (7% of NL)
- World market: 180 Mt/yr
 - Growing due to increasing food demand
- Future potential: energy carrier (storage and conversion)

A look at the industrial approach

Industrial processes

- Thermal catalysis
- Activation via high T & P
- Nitrogen fixation for fertilizers
 - Haber Bosch (*CH*₄ based with high CO₂ emissions)
 - Ostwald process (*NH*₃ comes from *H*-*B*)

CO₂ neutral nitrogen fixation

- Renewables
- Electrically driven process
 - Electrocatalysis
 - Plasma catalysis

http://www.quantitech.co.uk/entity-287-Ammonia-Synthesis.aspx

https://ostwaldnitricoxide.weebly.com/safety-and-cost-considerations.html

Electrocatalysis for nitrogen fixation: Ammonia

Electrocatalysis

- Green process
- Reactants: N₂ and H₂O
- Selectivity (N₂RR vs HER) and productivity issues
- Multiple approaches (ionic agents)
- Material research

Plasma for nitrogen fixation: Ammonia and nitric oxide

A. Ammonia synthesis

Y. Wang et al, ACS Catalysis, 2019

Plasma aided catalysis

- Green process
- Reactants: (a) N₂ + H₂* and (b) N₂ + O₂
 *Water electrolysis step is needed
- Energy efficiency considerations
- Multiple approaches
- Plasma activation is not selective
 - Cofeeding of reactants is not ideal

B. Nitric oxide synthesis (Birkeland-Eyde process)

N. Cherkasov et al, Chemical Engineering and Processing, 2015

Looking for synergy: plasma + electrocatalysis

partmen com Plasma

Concept

Water oxidation or reduction is realized in one compartment for supplying reacting species (i.e. protons or oxygen ions) via the solid electrolyte (membrane) to the plasma activated nitrogen compartment for either NH_3 or NO production.

Advantages

All electric with H_2O (or CO_2) and N_2 as feedstock ٠

H₂O

- Spatially separated reactants
 - Energy is directed to activate N₂
- Applied current controls the rate of supplied H⁺ or O²⁻ •
 - N₂ activation for boosting selectivity

Implementation: Reactor configuration

Ricard et al, Curr. Appl. Phys. 2017

Plasma activated electrochemical membrane reactor (EMR)

- SOEC: Ceramic tubular membrane (solid electrolyte), O²⁻ or H⁺ conductivity
- Dual chamber reactor: Counter electrode/Membrane/Plasma electrode (electrocatalyst)
- Low pressure (~5 mbar) RF plasma: Voluminous and well characterized
- Furnace allows operation at elevated temperature catalysis; conductivity
- Catalyst is exposed to plasma afterglow: i.e. catalysis happens far from the plasma active zone

Nitric oxide synthesis Proof of concept

Nitric oxide synthesis

Conventional SOEC electrolysis Bias Plasma OFF H_2O O^2 O^2 N_2 H_2 VSZ Pt N_2 , N_2 , O_2 Cathodic half reaction: $H_2O + 2e^- \Rightarrow H_2 + O^2$ $O^2 \Rightarrow \frac{1}{2}O_2 + 2e^-$

Transient experiments

- Online analysis of products
- Multiple steps

- **O²⁻ conducting EMR** and Pt electrodes.
- Two competing reactions on plasma exposed electrocatalyst
 - O₂ evolution and NO_x formation.

0

Nitric oxide synthesis and hydrogen cogeneration

Experimental conditions

- T=650°C
- N₂ 100 cc/min
- 3.5% H₂O/He 50cc/min
- Electrode geometrical area 20 cm²

Effect of applied current

Operation and observations

- Applied current \rightarrow oxygen flux
- Faradaic efficiency → selectivity to NO
- Rate vs current behavior
 - Limited supply of activated species on the catalyst active sites
 - Oxygen coverage
- NO concentration is up to 3 orders of magnitude higher than "equilibrium"

Nitric oxide synthesis and hydrogen cogeneration

Our approach based on Renewable Energy Driven chemistry

Haber-Bosch and Ostwald first step

Key findings

- Proof of concept
- Co-generation of H₂ and NO
- Valorization of both electrode reactions
- Further investigations are needed on
 - Selectivity
 - Productivity

Ammonia synthesis Proof of concept

Ammonia synthesis

Conventional SOEC electrolysis Bias Plasma OFF H_2O H^+ H^+ N_2 O_2 N_2 H_2 Anodic half reaction: $H_2O \rightarrow 2H^+ + \frac{1}{2}O_2 + 2e^-$ Cathodic half reaction: $2H^+ + 2e^- \rightarrow H_2$

Transient experiments

- Online analysis of products
- Multiple steps

Plasma activated SOEC electrolysis

- **Proton conducting EMR** and Ni, Pt electrodes.
- Two competing reactions on plasma exposed electrocatalyst
 - H₂ evolution and NH₃ formation.
Effect of applied current

Operation and observations

- Applied current \rightarrow proton flux
- Faradaic efficiency → selectivity to NH₃
- NH₃ concentration is up to 4 orders of magnitude higher than "equilibrium"

Plasma operation modes

- Pure plasma and plasma catalysis
 - Reactants co-fed in the inlet
 - Both are activated by plasma
 - Product decomposition
 - Energy losses
- Plasma catalysis
 - Catalyst assist in kinetics
- Plasma electrocatalysis
 - Reactants are spatial separated!
 - Plasma stimulus only to desired reactant
 - Product decomposition is hindered
 - Applied current: control on the proton flux

Ammonia synthesis in three operating modes

Comparison in three operation modes

- Plasma activated electrocatalysis
 - 1930 ppm NH₃
- Plasma aided catalysis
 - 1185 ppm NH₃
- Pure plasma
 - 990 ppm NH₃

Performance is influenced

- Hydrogen species adsorption pathways
 - Gas phase vs membrane
- Reactant separation
 - Product decomposition in plasma
 - Activated nitrogen densities (on catalyst) decrease due to dilution by hydrogen

Effect of H₂/N₂ ratio in NH₃ synthesis

Summary and future outlook

Summary

H. Patel et al, ACS Energy Letters, 2019 R. Sharma et al, ACS Energy Letters, 2021

Key performance indicators

Nitric oxide synthesis

- Up to 93% Faradaic efficiency to NO
- Maximum rate 3.15 nmol NO per s per cm²
- NO concentration > 10³ times equilibrium
- 1350 MJ/N-mol (Literature: 47-2698 MJ/N-mol)

Ammonia synthesis

- Up to 88% Faradaic efficiency to NH₃
- Maximum rate 26.8 nmol NH₃ per s per cm²
- *NH*₃ concentration > 10⁴ times equilibrium
- 605 MJ/N-mol (Literature: 47-2698 MJ/N-mol)
- TOF ~2.6 s⁻¹ vs ~ 0.1 s⁻¹ of HB
- <u>Plasma electrocatalysis > Plasma catalysis > Pure plasma</u>

Future outlook

H. Patel et al, ACS Energy Letters, 2019 R. Sharma et al, ACS Energy Letters, 2021

Main strategies to optimize productivity & efficiency

- Microkinetic modeling
- Plasma characterization
- Efficient coupling of plasma flux with active catalyst sites
 - Reactor design
 - Tuning plasma parameters
 - Advanced SOEC architectures
 - Electrocatalyst design

https://oracle-jp.eu/

Thank you for your attention!

